Explainable Zero-Shot Topic Extraction

Related tags

Deep LearningZeSTE
Overview

Zero-Shot Topic Extraction with Common-Sense Knowledge Graph

This repository contains the code for reproducing the results reported in the paper "Explainable Zero-Shot Topic Extraction with Common-Sense Knowledge Graph" (pdf) at the LDK 2021 Conference.

A user-friendly demo is available at: http://zeste.tools.eurecom.fr/

ZeSTE

Based on ConceptNet's common sense knowledge graph and embeddings, ZeSTE generates explainable predictions for a document topical category (e.g. politics, sports, video_games ..) without reliance on training data. The following is a high-level illustration of the approach:

API

ZeSTE can also be accessed via a RESTful API for easy deployment and use. For further information, please refer to the documentation: https://zeste.tools.eurecom.fr/doc

Dependencies

Before running any code in this repo, please install the following dependencies:

  • numpy
  • pandas
  • matplotlib
  • nltk
  • sklearn
  • tqdm
  • gensim

Code Overview

This repo is organized as follows:

  • generate_cache.py: this script processes the raw ConceptNet dump to produce cached files for each node in ConceptNet to accelerate the label neighborhood generation. It also transforms ConceptNet Numberbatch text file into a Gensim word embedding that we pickle for quick loading.
  • zeste.py: this is the main script for evaluation. It takes as argument the dataset to process as well as model configuration parameters such as neighborhood depth (see below). The results (classification report, confusion matrix, and classification metrics) are persisted into text files.
  • util.py: contains the functions that are used in zeste.py
  • label_mappings: contains the tab-separated mappings for the studied datasets.

Reproducing Results

1. Downloads

The two following files need to be downloaded to bypass the use of ConceptNet's web API: the dump of ConceptNet triplets, and the ConceptNet Numberbatch pre-computed word embeddings. You can download them from ConceptNet's and Numberbatch's repos, respectively.

# wget https://s3.amazonaws.com/conceptnet/downloads/2019/edges/conceptnet-assertions-5.7.0.csv.gz
# wget https://conceptnet.s3.amazonaws.com/downloads/2019/numberbatch/numberbatch-19.08.txt.gz
# gzip -d conceptnet-assertions-5.7.0.csv.gz
# gzip -d numberbatch-19.08.txt.gz

2. generate_cache.py

This script takes as input the two just-downloaded files and the cache path to where precomputed 1-hop label neighborhoods will be saved. This can take up to 7.2G of storage space.

usage: generate_cache.py [-h] [-cnp CONCEPTNET_ASSERTIONS_PATH] [-nbp CONCEPTNET_NUMBERBATCH_PATH] [-zcp ZESTE_CACHE_PATH]

Zero-Shot Topic Extraction

optional arguments:
  -h, --help            show this help message and exit
  -cnp CONCEPTNET_ASSERTIONS_PATH, --conceptnet_assertions_path CONCEPTNET_ASSERTIONS_PATH
                        Path to CSV file containing ConceptNet assertions dump
  -nbp CONCEPTNET_NUMBERBATCH_PATH, --conceptnet_numberbatch_path CONCEPTNET_NUMBERBATCH_PATH
                        Path to W2V file for ConceptNet Numberbatch
  -zcp ZESTE_CACHE_PATH, --zeste_cache_path ZESTE_CACHE_PATH
                        Path to the repository where the generated files will be saved

3. zeste.py

This script uses the precomputed 1-hop label neighborhoods to recursively generate label neighborhoods of any given depth (-d). It takes also as parameters the path to the dataset CSV file (which should have two columns: text and label). The rest of the arguments are for model experimentation.

usage: zeste.py [-h] [-cp CACHE_PATH] [-pp PREFETCH_PATH] [-nb NUMBERBATCH_PATH] [-dp DATASET_PATH] [-lm LABELS_MAPPING] [-rp RESULTS_PATH]
                [-d DEPTH] [-f FILTER] [-s {simple,compound,depth,harmonized}] [-ar ALLOWED_RELS]

Zero-Shot Topic Extraction

optional arguments:
  -h, --help            show this help message and exit
  -cp CACHE_PATH, --cache_path CACHE_PATH
                        Path to where the 1-hop word neighborhoods are cached
  -pp PREFETCH_PATH, --prefetch_path PREFETCH_PATH
                        Path to where the precomputed n-hop neighborhoods are cached
  -nb NUMBERBATCH_PATH, --numberbatch_path NUMBERBATCH_PATH
                        Path to the pickled Numberbatch
  -dp DATASET_PATH, --dataset_path DATASET_PATH
                        Path to the dataset to process
  -lm LABELS_MAPPING, --labels_mapping LABELS_MAPPING
                        Path to the mapping between the dataset labels and ZeSTE labels (multiword labels are comma-separated)
  -rp RESULTS_PATH, --results_path RESULTS_PATH
                        Path to the directory where to store the results
  -d DEPTH, --depth DEPTH
                        How many hops to generate the neighborhoods
  -f FILTER, --filter FILTER
                        Filtering method: top[N], top[P]%, thresh[T], all
  -s {simple,compound,depth,harmonized}, --similarity {simple,compound,depth,harmonized}
  -ar ALLOWED_RELS, --allowed_rels ALLOWED_RELS
                        Which relationships to use (comma-separated or all)

Cite this work

@InProceedings{harrando_et_al_zeste_2021,
  author ={Harrando, Ismail and Troncy, Rapha\"{e}l},
  title ={{Explainable Zero-Shot Topic Extraction Using a Common-Sense Knowledge Graph}},
  booktitle ={3rd Conference on Language, Data and Knowledge (LDK 2021)},
  pages ={17:1--17:15},
  year ={2021},
  volume ={93},
  publisher ={Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  URL ={https://drops.dagstuhl.de/opus/volltexte/2021/14553},
  URN ={urn:nbn:de:0030-drops-145532},
  doi ={10.4230/OASIcs.LDK.2021.17},
}
Owner
D2K Lab
Data to Knowledge Virtual Lab (LINKS Foundation - EURECOM)
D2K Lab
Generate images from texts. In Russian

ruDALL-E Generate images from texts pip install rudalle==1.1.0rc0 🤗 HF Models: ruDALL-E Malevich (XL) ruDALL-E Emojich (XL) (readme here) ruDALL-E S

AI Forever 1.6k Dec 31, 2022
Public implementation of the Convolutional Motif Kernel Network (CMKN) architecture

CMKN Implementation of the convolutional motif kernel network (CMKN) introduced in Ditz et al., "Convolutional Motif Kernel Network", 2021. Testing Yo

1 Nov 17, 2021
Hierarchical Memory Matching Network for Video Object Segmentation (ICCV 2021)

Hierarchical Memory Matching Network for Video Object Segmentation Hongje Seong, Seoung Wug Oh, Joon-Young Lee, Seongwon Lee, Suhyeon Lee, Euntai Kim

Hongje Seong 72 Dec 14, 2022
Open source implementation of "A Self-Supervised Descriptor for Image Copy Detection" (SSCD).

A Self-Supervised Descriptor for Image Copy Detection (SSCD) This is the open-source codebase for "A Self-Supervised Descriptor for Image Copy Detecti

Meta Research 68 Jan 04, 2023
SeqTR: A Simple yet Universal Network for Visual Grounding

SeqTR This is the official implementation of SeqTR: A Simple yet Universal Network for Visual Grounding, which simplifies and unifies the modelling fo

seanZhuh 76 Dec 24, 2022
Learnable Motion Coherence for Correspondence Pruning

Learnable Motion Coherence for Correspondence Pruning Yuan Liu, Lingjie Liu, Cheng Lin, Zhen Dong, Wenping Wang Project Page Any questions or discussi

liuyuan 41 Nov 30, 2022
Diffusion Normalizing Flow (DiffFlow) Neurips2021

Diffusion Normalizing Flow (DiffFlow) Reproduce setup environment The repo heavily depends on jam, a personal toolbox developed by Qsh.zh. The API may

76 Jan 01, 2023
Where2Act: From Pixels to Actions for Articulated 3D Objects

Where2Act: From Pixels to Actions for Articulated 3D Objects The Proposed Where2Act Task. Given as input an articulated 3D object, we learn to propose

Kaichun Mo 69 Nov 28, 2022
Deep learning for Engineers - Physics Informed Deep Learning

SciANN: Neural Networks for Scientific Computations SciANN is a Keras wrapper for scientific computations and physics-informed deep learning. New to S

SciANN 195 Jan 03, 2023
Performant, differentiable reinforcement learning

deluca Performant, differentiable reinforcement learning Notes This is pre-alpha software and is undergoing a number of core changes. Updates to follo

Google 114 Dec 27, 2022
MANO hand model porting for the GraspIt simulator

Learning Joint Reconstruction of Hands and Manipulated Objects - ManoGrasp Porting the MANO hand model to GraspIt! simulator Yana Hasson, GĂĽl Varol, D

Lucas Wohlhart 10 Feb 08, 2022
Official implementation for “Unsupervised Low-Light Image Enhancement via Histogram Equalization Prior”

HEP Unsupervised Low-Light Image Enhancement via Histogram Equalization Prior Implementation Python3 PyTorch=1.0 NVIDIA GPU+CUDA Training process The

FengZhang 34 Dec 04, 2022
An OpenAI-Gym Package for Training and Testing Reinforcement Learning algorithms with OpenSim Models

Authors: Utkarsh A. Mishra and Dr. Dimitar Stanev Advisors: Dr. Dimitar Stanev and Prof. Auke Ijspeert, Biorobotics Laboratory (BioRob), EPFL Video Pl

Utkarsh Mishra 16 Dec 13, 2022
[CVPR2022] Bridge-Prompt: Towards Ordinal Action Understanding in Instructional Videos

Bridge-Prompt: Towards Ordinal Action Understanding in Instructional Videos Created by Muheng Li, Lei Chen, Yueqi Duan, Zhilan Hu, Jianjiang Feng, Jie

58 Dec 23, 2022
The source code and data of the paper "Instance-wise Graph-based Framework for Multivariate Time Series Forecasting".

IGMTF The source code and data of the paper "Instance-wise Graph-based Framework for Multivariate Time Series Forecasting". Requirements The framework

Wentao Xu 24 Dec 05, 2022
Learning infinite-resolution image processing with GAN and RL from unpaired image datasets, using a differentiable photo editing model.

Exposure: A White-Box Photo Post-Processing Framework ACM Transactions on Graphics (presented at SIGGRAPH 2018) Yuanming Hu1,2, Hao He1,2, Chenxi Xu1,

Yuanming Hu 719 Dec 29, 2022
A Python Automated Machine Learning tool that optimizes machine learning pipelines using genetic programming.

Master status: Development status: Package information: TPOT stands for Tree-based Pipeline Optimization Tool. Consider TPOT your Data Science Assista

Epistasis Lab at UPenn 8.9k Dec 30, 2022
TorchFlare is a simple, beginner-friendly, and easy-to-use PyTorch Framework train your models effortlessly.

TorchFlare TorchFlare is a simple, beginner-friendly and an easy-to-use PyTorch Framework train your models without much effort. It provides an almost

Atharva Phatak 85 Dec 26, 2022
OCR-D wrapper for detectron2 based segmentation models

ocrd_detectron2 OCR-D wrapper for detectron2 based segmentation models Introduction Installation Usage OCR-D processor interface ocrd-detectron2-segm

Robert Sachunsky 13 Dec 06, 2022
Facial detection, landmark tracking and expression transfer library for Windows, Linux and Mac

Welcome to the CSIRO Face Analysis SDK. Documentation for the SDK can be found in doc/documentation.html. All code in this SDK is provided according t

Luiz Carlos Vieira 7 Jul 16, 2020