Model-free Vehicle Tracking and State Estimation in Point Cloud Sequences

Overview

Model-free Vehicle Tracking and State Estimation in Point Cloud Sequences

1. Introduction

This project is for paper Model-free Vehicle Tracking and State Estimation in Point Cloud Sequences. It concerns the single object tracking (SOT) of objects in point cloud sequences.

The input to the algorithm is the starting location (in the form of a 3D bounding box) of an object and the point cloud sequences for the scene. Our tracker then (1) provides the bounding box on each subsequent point cloud frame, (2) gets the dense shapes by aggregating the point clouds along with tracking.We also explore the usages on other applications, such as simulating LiDAR scans for data augmentation.

Please check our youtube video below for a 1-minute demonstration, and this link to the bilibili version. Youtube Video for Our Project

This README file describes the most basic usages of our code base. For more details, please refer to:

  • Data Preprocessing: It describes how to convert the raw data in Waymo dataset into more handy forms, which can be used by our algorithms.
  • Benchmark: It explains the selection of tracklets and construction of our benchmark. Note that the benchmark information is already in the ./benchmark/ and you may directly use it. The code in this part is for the purpose of verification.
  • Design: This documentation explains our design for the implementation. Reading this would be useful for understanding our tracker implementation and modifying it for your own purpose.
  • Model Configs: We use the config.yaml to specify the behaviour of the tracker. Please refer to this documentation for detailed explanation.
  • Toolkit: Along this with project, we also provide several code snippets for visualizing the tracking results. This file discusses these toolkits we have created.

2. SOT API and Inference

2.1 Installation

Our code has been thoroughly tested using the environment of python=3.6. For more detailed dependencies, please refer to the Environment section below.

We wrap the usages of our code into a library sot_3d, and the users may install it via the following command. The advantage of this installation command is that the behaviors of sot_3d will keep synchronized with your modifications.

pip install -e ./

2.2 Tracking API

The main API tracker_api is in main.py. In the default case, it takes the model configuration, the beginning bounding box, and a data loader as input, output the tracking result as specified below. Some additional guidelines on this API are:

  • data_loader is an iterator reading the data. On each iteration, it returns a dictionary, with the keys pc (point cloud) and ego (the transformation matrix to the world coordinate) as compulsory. An example of data_loader is in example_loader.
  • When you want to compare the tracking results with the ground truth along with tracking, please provide the input argument gts and import the function compare_to_gt, the data type sot_3d.data_protos.BBox . The gts are a list of BBox.
  • We also provide a handy tool for visualization. Please import from sot_3d.visualization import Visualizer2D and frame_result_visualization for a frame-level BEV visualization.
import sot_3d
from sot_3d.data_protos import BBox
from sot_3d.visualization import Visualizer2D


def tracker_api(configs, id, start_bbox, start_frame, data_loader, track_len, gts=None, visualize=False):
""" 
    Args:
        configs: model configuration read from config.yaml
        id (str): each tracklet has an id
        start_bbox ([x, y, z, yaw, l, w, h]): the beginning location of this id
        data_loader (an iterator): iterator returning data of each incoming frame
        track_len: number of frames in the tracklet
    Return:
        {
            frame_number0: {'bbox0': previous frame result, 'bbox1': current frame result, 'motion': estimated motion}
            frame_number1: ...
            ...
            frame_numberN: ...
        }
"""

2.3 Evaluation API

The API for evaluation is in evaluation/evaluation.py. tracklet_acc and tracklet_rob compute the accuracy and robustness given the ious in a tracklet, and metrics_from_bboxes deals with the cases when the inputs are raw bounding boxes. Note that the bounding boxes are in the format of sot_3d.data_protos.BBox.

def tracklet_acc(ious):
    ...
    """ the accuracy for a tracklet
    """

def tracklet_rob(ious, thresholds):
    ...
    """ compute the robustness of a tracklet
    """

def metrics_from_bboxes(pred_bboxes, gts):
    ...
    """ Compute the accuracy and robustness of a tracklet
    Args:
        pred_bboxes (list of BBox)
        gts (list of BBox)
    Return:
        accuracy, robustness, length of tracklet
    """

3 Building Up the Benchmark

Our LiDAR-SOT benchmark selects 1172 tracklets from the validation set of Waymo Open Dataset. These tracklets satisfy the requirements of mobility, length, and meaningful initialization.

The information of selected tracklets is in the ./benchmark/. Each json file stores the ids, segment names, and the frame intervals for each selected tracklet. For replicating the construction of this benchmark, please refer to this documentation.

4. Steps for Inference/Evaluation on the Benchmark

4.1 Data Preparation

Please follow the guidelines in Data Preprocessing. Suppose your root directory is DATA_ROOT.

4.2 Running on the benchmark

The command for running on the inference is as follows. Note that there are also some other arguments, please refer to the main.py for more details.

python main.py \
    --name NAME \                         # The NAME for your experiment.
    --bench_list your_tracklet_list \     # The path for your benchmark tracklets. By default at ./benchmark/bench_list.json.
    --data_folder DATA_ROOT \             # The location to store your datasets.
    --result_folder result_folder \       # Where you store the results of each tracklet.
    --process process_number \            # Use mutiple processes to split the dataset and accelerate inference.

After this, you may access the result for tracklet ID as demonstrated below. Inside the json files, bbox0 and bbox1 indicates the estimated bounding boxes in frame frame_index - 1 and frame_index.

-- result_folder
   -- NAME
       -- summary
           -- ID.json
               {
                   frame_index0: {'bbox0': ..., 'bbox1': ..., 'motion': ..., 
                                  'gt_bbox0': ..., 'gt_bbox1': ..., 'gt_motion': ..., 
                                  'iou2d': ..., 'iou3d': ...}
                   frame_index1: ...
                   frame_indexN: ...
               }

4.3 Evaluation

For computing the accuracy and robustness of tracklets, use the following code:

cd evaluation
python evaluation.py \
    --name NAME \                                 # the name of the experiment
    --result_folder result_folder \               # result folder
    --data_folder DATA_ROOT \                     # root directory storing the dataset
    --bench_list_folder benchmark_list_folder \   # directory for benchmark tracklet information, by default the ./benchmark/
    --iou                                         # use this if already computes the iou during inference
    --process process_number                      # use multiprocessing to accelerate the evaluation, especially in cases of computing iou

For the evaluation of shapes, use the following code:

cd evaluation
python evaluation.py \
    --name NAME \                                 # the name of the experiment
    --result_folder result_folder \               # result folder
    --data_folder DATA_ROOT \                     # root directory storing the dataset
    --bench_list_folder benchmark_list_folder \   # directory for benchmark tracklet information, by default the ./benchmark/
    --process process_number                      # Use mutiple processes to split the dataset and accelerate evaluation.

5. Environment

This repository has been tested and run using python=3.6.

For inference on the dataset using our tracker, the following libraries are compulsory:

numpy, scikit-learn, numba, scipy

If the evaluation with ground-truth is involved, please install the shapely library for the computation of iou.

shapely (for iou computation)

The data preprocessing on Waymo needs.

waymo_open_dataset

Our visualization toolkit needs.

matplotlib, open3d, pangolin

6. Citation

If you find our paper or repository useful, please consider citing

@article{pang2021model,
    title={Model-free Vehicle Tracking and State Estimation in Point Cloud Sequences},
    author={Pang, Ziqi and Li, Zhichao and Wang, Naiyan},
    journal={arXiv preprint arXiv:2103.06028},
    year={2021}
}
Owner
TuSimple
The Future of Trucking
TuSimple
details on efforts to dump the Watermelon Games Paprium cart

Reminder, if you like these repos, fork them so they don't disappear https://github.com/ArcadeHustle/WatermelonPapriumDump/fork Big thanks to Fonzie f

Hustle Arcade 29 Dec 11, 2022
Efficient electromagnetic solver based on rigorous coupled-wave analysis for 3D and 2D multi-layered structures with in-plane periodicity

Efficient electromagnetic solver based on rigorous coupled-wave analysis for 3D and 2D multi-layered structures with in-plane periodicity, such as gratings, photonic-crystal slabs, metasurfaces, surf

Alex Song 17 Dec 19, 2022
Consensus Learning from Heterogeneous Objectives for One-Class Collaborative Filtering

Consensus Learning from Heterogeneous Objectives for One-Class Collaborative Filtering This repository provides the source code of "Consensus Learning

SeongKu-Kang 6 Apr 29, 2022
Implementation of Gans

GAN Generative Adverserial Networks are an approach to generative data modelling using Deep learning methods. I have currently implemented : DCGAN on

Sibam Parida 5 Sep 07, 2021
A Fast and Stable GAN for Small and High Resolution Imagesets - pytorch

A Fast and Stable GAN for Small and High Resolution Imagesets - pytorch The official pytorch implementation of the paper "Towards Faster and Stabilize

Bingchen Liu 455 Jan 08, 2023
A tool to visualise the results of AlphaFold2 and inspect the quality of structural predictions

AlphaFold Analyser This program produces high quality visualisations of predicted structures produced by AlphaFold. These visualisations allow the use

Oliver Powell 3 Nov 13, 2022
Detecting Human-Object Interactions with Object-Guided Cross-Modal Calibrated Semantics

[AAAI2022] Detecting Human-Object Interactions with Object-Guided Cross-Modal Calibrated Semantics Overall pipeline of OCN. Paper Link: [arXiv] [AAAI

13 Nov 21, 2022
Small repo describing how to use Hugging Face's Wav2Vec2 with PyCTCDecode

πŸ€— Transformers Wav2Vec2 + PyCTCDecode Introduction This repo shows how πŸ€— Transformers can be used in combination with kensho-technologies's PyCTCDec

Patrick von Platen 102 Oct 22, 2022
Learning hidden low dimensional dyanmics using a Generalized Onsager Principle and neural networks

OnsagerNet Learning hidden low dimensional dyanmics using a Generalized Onsager Principle and neural networks This is the original pyTorch implemenati

Haijun.Yu 3 Aug 24, 2022
A annotation of yolov5-5.0

δ»£η η‰ˆζœ¬οΌš0714 commit #4000 $ git clone https://github.com/ultralytics/yolov5 $ cd yolov5 $ git checkout 720aaa65c8873c0d87df09e3c1c14f3581d4ea61 θΏ™δΈͺ代码εͺζ˜―ζ³¨ι‡Šη‰ˆ

Laughing 229 Dec 17, 2022
Multiple-criteria decision-making (MCDM) with Electre, Promethee, Weighted Sum and Pareto

EasyMCDM - Quick Installation methods Install with PyPI Once you have created your Python environment (Python 3.6+) you can simply type: pip3 install

Labrak Yanis 6 Nov 22, 2022
Code for "Learning the Best Pooling Strategy for Visual Semantic Embedding", CVPR 2021

Learning the Best Pooling Strategy for Visual Semantic Embedding Official PyTorch implementation of the paper Learning the Best Pooling Strategy for V

Jiacheng Chen 106 Jan 06, 2023
Simple streamlit app to demonstrate HERE Tour Planning

Table of Contents About the Project Built With Getting Started Prerequisites Installation Usage Roadmap Contributing License Acknowledgements About Th

Amol 8 Sep 05, 2022
Audio Visual Emotion Recognition using TDA

Audio Visual Emotion Recognition using TDA RAVDESS database with two datasets analyzed: Video and Audio dataset: Audio-Dataset: https://www.kaggle.com

Combinatorial Image Analysis research group 3 May 11, 2022
Gray Zone Assessment

Gray Zone Assessment Get started Clone github repository git clone https://github.com/andreanne-lemay/gray_zone_assessment.git Build docker image dock

1 Jan 08, 2022
The project is an official implementation of our CVPR2019 paper "Deep High-Resolution Representation Learning for Human Pose Estimation"

Deep High-Resolution Representation Learning for Human Pose Estimation (CVPR 2019) News [2020/07/05] A very nice blog from Towards Data Science introd

Leo Xiao 3.9k Jan 05, 2023
PSANet: Point-wise Spatial Attention Network for Scene Parsing, ECCV2018.

PSANet: Point-wise Spatial Attention Network for Scene Parsing (in construction) by Hengshuang Zhao*, Yi Zhang*, Shu Liu, Jianping Shi, Chen Change Lo

Hengshuang Zhao 217 Oct 30, 2022
Yet Another Robotics and Reinforcement (YARR) learning framework for PyTorch.

Yet Another Robotics and Reinforcement (YARR) learning framework for PyTorch.

Stephen James 51 Dec 27, 2022
Light-SERNet: A lightweight fully convolutional neural network for speech emotion recognition

Light-SERNet This is the Tensorflow 2.x implementation of our paper "Light-SERNet: A lightweight fully convolutional neural network for speech emotion

Arya Aftab 29 Nov 12, 2022
2021 Artificial Intelligence Diabetes Datathon

A.I.D.D. 2021 2021 Artificial Intelligence Diabetes Datathon A.I.D.D. 2021은 β€˜2021 인곡지λŠ₯ ν•™μŠ΅μš© 데이터 ꡬ좕사업’을 톡해 λ§Œλ“€μ–΄μ§„ ν•™μŠ΅μš© 데이터λ₯Ό ν™œμš©ν•˜μ—¬ 당뇨병을 효과적으둜 μ˜ˆμΈ‘ν•  수 μžˆλŠ”κ°€μ— λŒ€ν•œ A

2 Dec 27, 2021