LAMDA: Label Matching Deep Domain Adaptation

Overview

LAMDA: Label Matching Deep Domain Adaptation

GitHub top languageGitHub last commitGitHub repo sizeGitHub license

This is the implementation of the paper LAMDA: Label Matching Deep Domain Adaptation which has been accepted at ICML 2021.

A. Setup

A.1. Install Package Dependencies

Install manually

Python Environment: >= 3.5
Tensorflow: >= 1.9

Install automatically from YAML file

pip install --upgrade pip
conda env create --file tf1.9py3.5.yml

[UPDATE] Install tensorbayes

Please note that tensorbayes 0.4.0 is out of date. Please copy a newer version to the env folder (tf1.9py3.5) using tensorbayes.tar

source activate tf1.9py3.5
pip install tensorbayes
tar -xvf tensorbayes.tar
cp -rf /tensorbayes/* /opt/conda/envs/tf1.9py3.5/lib/python3.5/site-packages/tensorbayes/

A.2. Datasets

Please download Office-31 here and unzip extracted features in the datasets folder.

B. Training

We first navigate to model folder, and then run run_lamda.py file as bellow:

cd model
  1. A --> W task
python run_lamda.py 1 amazon webcam format csv num_iters 20000 summary_freq 400 learning_rate 0.0001 inorm True batch_size 310 src_class_trade_off 1.0 domain_trade_off 0.1 src_vat_trade_off 0.1 trg_trade_off 0.1 save_grads False cast_data False cnn_size small update_target_loss False m_on_D_trade_off 1.0 m_plus_1_on_D_trade_off 1.0 m_plus_1_on_G_trade_off 1.0 m_on_G_trade_off 0.1 data_path ""
  1. A --> D task
python run_lamda.py 1 amazon dslr format csv num_iters 20000 summary_freq 400 learning_rate 0.0001 inorm True batch_size 310 src_class_trade_off 1.0 domain_trade_off 0.1 src_vat_trade_off 1.0 trg_trade_off 0.1 save_grads False cast_data False cnn_size small update_target_loss False m_on_D_trade_off 1.0 m_plus_1_on_D_trade_off 1.0 m_plus_1_on_G_trade_off 1.0 m_on_G_trade_off 0.05 data_path ""
  1. D --> W task
python run_lamda.py 1 dslr webcam format csv num_iters 20000 summary_freq 400 learning_rate 0.0001 inorm True batch_size 155 src_class_trade_off 1.0 domain_trade_off 0.1 src_vat_trade_off 0.1 trg_trade_off 0.1 save_grads False cast_data False cnn_size small update_target_loss False m_on_D_trade_off 1.0 m_plus_1_on_D_trade_off 1.0 m_plus_1_on_G_trade_off 1.0 m_on_G_trade_off 0.1 data_path ""
  1. W --> D task
python run_lamda.py 1 webcam dslr format csv num_iters 20000 summary_freq 400 learning_rate 0.0001 inorm True batch_size 310 src_class_trade_off 1.0 domain_trade_off 0.1 src_vat_trade_off 0.1 trg_trade_off 0.1 save_grads False cast_data False cnn_size small update_target_loss False m_on_D_trade_off 1.0 m_plus_1_on_D_trade_off 1.0 m_plus_1_on_G_trade_off 1.0 m_on_G_trade_off 0.1 data_path ""
  1. D --> A task
python run_lamda.py 1 dslr amazon format csv num_iters 20000  sumary_freq 400 learning_rate 0.0001 inorm True batch_size 155 src_class_trade_off 1.0 domain_trade_off 0.1 src_vat_trade_off 1.0 trg_trade_off 0.1 save_grads False cast_data False cnn_size small update_target_loss False m_on_D_trade_off 1.0 m_plus_1_on_D_trade_off 1.0 m_plus_1_on_G_trade_off 1.0 m_on_G_trade_off 1.0 data_path ""
  1. W --> A task
python run_lamda.py 1 webcam amazon format csv num_iters 20000 summary_freq 400 learning_rate 0.0001 inorm True batch_size 310 src_class_trade_off 1.0 domain_trade_off 0.1 src_vat_trade_off 1.0 trg_trade_off 0.1 save_grads False cast_data False cnn_size small update_target_loss False m_on_D_trade_off 1.0 m_plus_1_on_D_trade_off 1.0 m_plus_1_on_G_trade_off 1.0 m_on_G_trade_off 1.0 data_path ""

C. Results

Methods A --> W A --> D D --> W W --> D D --> A W --> A Avg
ResNet-50 [1] 70.0 65.5 96.1 99.3 62.8 60.5 75.7
DeepCORAL [2] 83.0 71.5 97.9 98.0 63.7 64.5 79.8
DANN [3] 81.5 74.3 97.1 99.6 65.5 63.2 80.2
ADDA [4] 86.2 78.8 96.8 99.1 69.5 68.5 83.2
CDAN [5] 94.1 92.9 98.6 100.0 71.0 69.3 87.7
TPN [6] 91.2 89.9 97.7 99.5 70.5 73.5 87.1
DeepJDOT [7] 88.9 88.2 98.5 99.6 72.1 70.1 86.2
RWOT [8] 95.1 94.5 99.5 100.0 77.5 77.9 90.8
LAMDA 95.2 96.0 98.5 100.0 87.3 84.4 93.0

D. Citations

Please cite the paper if LAMDA is helpful for your research:

@InProceedings{pmlr-v139-le21a,
  title = 	 {LAMDA: Label Matching Deep Domain Adaptation},
  author =       {Le, Trung and Nguyen, Tuan and Ho, Nhat and Bui, Hung and Phung, Dinh},
  booktitle = 	 {Proceedings of the 38th International Conference on Machine Learning},
  pages = 	 {6043--6054},
  year = 	 {2021},
  editor = 	 {Meila, Marina and Zhang, Tong},
  volume = 	 {139},
  series = 	 {Proceedings of Machine Learning Research},
  month = 	 {18--24 Jul},
  publisher =    {PMLR},
  pdf = 	 {http://proceedings.mlr.press/v139/le21a/le21a.pdf},
  url = 	 {https://proceedings.mlr.press/v139/le21a.html},
  abstract = 	 {Deep domain adaptation (DDA) approaches have recently been shown to perform better than their shallow rivals with better modeling capacity on complex domains (e.g., image, structural data, and sequential data). The underlying idea is to learn domain invariant representations on a latent space that can bridge the gap between source and target domains. Several theoretical studies have established insightful understanding and the benefit of learning domain invariant features; however, they are usually limited to the case where there is no label shift, hence hindering its applicability. In this paper, we propose and study a new challenging setting that allows us to use a Wasserstein distance (WS) to not only quantify the data shift but also to define the label shift directly. We further develop a theory to demonstrate that minimizing the WS of the data shift leads to closing the gap between the source and target data distributions on the latent space (e.g., an intermediate layer of a deep net), while still being able to quantify the label shift with respect to this latent space. Interestingly, our theory can consequently explain certain drawbacks of learning domain invariant features on the latent space. Finally, grounded on the results and guidance of our developed theory, we propose the Label Matching Deep Domain Adaptation (LAMDA) approach that outperforms baselines on real-world datasets for DA problems.}
}

E. References

E.1. Baselines:

[1] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition. In 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pages 770–778, 2016.

[2] B. Sun and K. Saenko. Deep coral: Correlation alignment for deep domain adaptation. In Gang Hua and Hervé Jéegou, editors, Computer Vision – ECCV 2016 Workshops, pages 443–450, Cham, 2016. Springer International Publishing.

[3] Y. Ganin, E. Ustinova, H. Ajakan, P. Germain, H. Larochelle, F. Laviolette, M. Marchand, and V. Lempitsky. Domain-adversarial training of neural networks. J. Mach. Learn. Res., 17(1):2096–2030, jan 2016.

[4] E. Tzeng, J. Hoffman, K. Saenko, and T. Darrell. Adversarial discriminative domain adaptation. In 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pages 2962–2971, 2017.

[5] M. Long, Z. Cao, J. Wang, and M. I. Jordan. Conditional adversarial domain adaptation. In Advances in Neural Information Processing Systems 31, pages 1640–1650. Curran Associates, Inc., 2018.

[6] Y. Pan, T. Yao, Y. Li, Y. Wang, C. Ngo, and T. Mei. Transferrable prototypical networks for unsupervised domain adaptation. In CVPR, pages 2234–2242, 2019.

[7] B. B. Damodaran, B. Kellenberger, R. Flamary, D. Tuia, and N. Courty. Deepjdot: Deep joint distribution optimal transport for unsupervised domain adaptation. In Computer Vision - ECCV 2018, pages 467–483. Springer, 2018.

[8] R. Xu, P. Liu, L. Wang, C. Chen, and J. Wang. Reliable weighted optimal transport for unsupervised domain adaptation. In CVPR 2020, June 2020.

E.2. GitHub repositories:

  • Some parts of our code (e.g., VAT, evaluation, …) are rewritten with modifications from DIRT-T.
Owner
Tuan Nguyen
Interested in Computer Vision, Domain Adaptation, Optimal Transport.
Tuan Nguyen
Bottom-up attention model for image captioning and VQA, based on Faster R-CNN and Visual Genome

bottom-up-attention This code implements a bottom-up attention model, based on multi-gpu training of Faster R-CNN with ResNet-101, using object and at

Peter Anderson 1.3k Jan 09, 2023
The code for SAG-DTA: Prediction of Drug–Target Affinity Using Self-Attention Graph Network.

SAG-DTA The code is the implementation for the paper 'SAG-DTA: Prediction of Drug–Target Affinity Using Self-Attention Graph Network'. Requirements py

Shugang Zhang 7 Aug 02, 2022
an Evolutionary Algorithm assisted GAN

EvoGAN an Evolutionary Algorithm assisted GAN ckpts

3 Oct 09, 2022
《K-Adapter: Infusing Knowledge into Pre-Trained Models with Adapters》(2020)

K-Adapter: Infusing Knowledge into Pre-Trained Models with Adapters This repository is the implementation of the paper "K-Adapter: Infusing Knowledge

Microsoft 118 Dec 13, 2022
Data manipulation and transformation for audio signal processing, powered by PyTorch

torchaudio: an audio library for PyTorch The aim of torchaudio is to apply PyTorch to the audio domain. By supporting PyTorch, torchaudio follows the

1.9k Dec 28, 2022
[NeurIPS 2021] “Improving Contrastive Learning on Imbalanced Data via Open-World Sampling”,

Improving Contrastive Learning on Imbalanced Data via Open-World Sampling Introduction Contrastive learning approaches have achieved great success in

VITA 24 Dec 17, 2022
Combining Automatic Labelers and Expert Annotations for Accurate Radiology Report Labeling Using BERT

CheXbert: Combining Automatic Labelers and Expert Annotations for Accurate Radiology Report Labeling Using BERT CheXbert is an accurate, automated dee

Stanford Machine Learning Group 51 Dec 08, 2022
Incorporating Transformer and LSTM to Kalman Filter with EM algorithm

Deep learning based state estimation: incorporating Transformer and LSTM to Kalman Filter with EM algorithm Overview Kalman Filter requires the true p

zshicode 57 Dec 27, 2022
This code uses generative adversarial networks to generate diverse task allocation plans for Multi-agent teams.

Mutli-agent task allocation This code uses generative adversarial networks to generate diverse task allocation plans for Multi-agent teams. To change

Biorobotics Lab 5 Oct 12, 2022
Implementation EfficientDet: Scalable and Efficient Object Detection in PyTorch

Implementation EfficientDet: Scalable and Efficient Object Detection in PyTorch

tonne 1.4k Dec 29, 2022
This repository contains notebook implementations of the following Neural Process variants: Conditional Neural Processes (CNPs), Neural Processes (NPs), Attentive Neural Processes (ANPs).

The Neural Process Family This repository contains notebook implementations of the following Neural Process variants: Conditional Neural Processes (CN

DeepMind 892 Dec 28, 2022
Breast Cancer Detection 🔬 ITI "AI_Pro" Graduation Project

BreastCancerDetection - This program is designed to predict two severity of abnormalities associated with breast cancer cells: benign and malignant. Mammograms from MIAS is preprocessed and features

6 Nov 29, 2022
DenseNet Implementation in Keras with ImageNet Pretrained Models

DenseNet-Keras with ImageNet Pretrained Models This is an Keras implementation of DenseNet with ImageNet pretrained weights. The weights are converted

Felix Yu 568 Oct 31, 2022
3D dataset of humans Manipulating Objects in-the-Wild (MOW)

MOW dataset [Website] This repository maintains our 3D dataset of humans Manipulating Objects in-the-Wild (MOW). The dataset contains 512 images in th

Zhe Cao 28 Nov 06, 2022
📚 Papermill is a tool for parameterizing, executing, and analyzing Jupyter Notebooks.

papermill is a tool for parameterizing, executing, and analyzing Jupyter Notebooks. Papermill lets you: parameterize notebooks execute notebooks This

nteract 5.1k Jan 03, 2023
A naive ROS interface for visualDet3D.

YOLO3D ROS Node This repo contains a Monocular 3D detection Ros node. Base on https://github.com/Owen-Liuyuxuan/visualDet3D All parameters are exposed

Yuxuan Liu 19 Oct 08, 2022
A Lighting Pytorch Framework for Recommendation System, Easy-to-use and Easy-to-extend.

Torch-RecHub A Lighting Pytorch Framework for Recommendation Models, Easy-to-use and Easy-to-extend. 安装 pip install torch-rechub 主要特性 scikit-learn风格易用

Mincai Lai 67 Jan 04, 2023
Unofficial pytorch implementation of paper "One-Shot Free-View Neural Talking-Head Synthesis for Video Conferencing"

One-Shot Free-View Neural Talking Head Synthesis Unofficial pytorch implementation of paper "One-Shot Free-View Neural Talking-Head Synthesis for Vide

ZLH 406 Dec 23, 2022
ImageNet-CoG is a benchmark for concept generalization. It provides a full evaluation framework for pre-trained visual representations which measure how well they generalize to unseen concepts.

The ImageNet-CoG Benchmark Project Website Paper (arXiv) Code repository for the ImageNet-CoG Benchmark introduced in the paper "Concept Generalizatio

NAVER 23 Oct 09, 2022
A scikit-learn compatible neural network library that wraps PyTorch

A scikit-learn compatible neural network library that wraps PyTorch. Resources Documentation Source Code Examples To see more elaborate examples, look

4.9k Dec 31, 2022