This is the pytorch re-implementation of the IterNorm

Overview

IterNorm-pytorch

Pytorch reimplementation of the IterNorm methods, which is described in the following paper:

Iterative Normalization: Beyond Standardization towards Efficient Whitening

Lei Huang, Yi Zhou, Fan Zhu, Li Liu, Ling Shao

IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2019 (accepted). arXiv:1904.03441

This project also provide the pytorch implementation of Decorrelated Batch Normalization (CVPR 2018, arXiv:1804.08450), more details please refer to the Torch project.

Requirements and Dependency

  • Install PyTorch with CUDA (for GPU). (Experiments are validated on python 3.6.8 and pytorch-nightly 1.0.0)
  • (For visualization if needed), install the dependency visdom by:
pip install visdom

Experiments

1. VGG-network on Cifar-10 datasets:

run the scripts in the ./cifar10/experiments/vgg. Note that the dataset root dir should be altered by setting the para '--dataset-root', and the dataset style is described as:

-<dataset-root>
|-cifar10-batches-py
||-data_batch_1
||-data_batch_2
||-data_batch_3
||-data_batch_4
||-data_batch_5
||-test_batch

If the dataset is not exist, the script will download it, under the conditioning that the dataset-root dir is existed

2. Wide-Residual-Network on Cifar-10 datasets:

run the scripts in the ./cifar10/experiments/wrn.

3. ImageNet experiments.

run the scripts in the ./ImageNet/experiment. Note that resnet18 experimetns are run on one GPU, and resnet-50/101 are run on 4 GPU in the scripts.

Note that the dataset root dir should be altered by setting the para '--dataset-root'. and the dataset style is described as:

-<dataset-root>
|-train
||-class1
||-...
||-class1000  
|-var
||-class1
||-...
||-class1000  

Using IterNorm in other projects/tasks

(1) copy ./extension/normalization/iterative_normalization.py to the respective dir.

(2) import the IterNorm class in iterative_normalization.py

(3) generally speaking, replace the BatchNorm layer by IterNorm, or add it in any place if you want to the feature/channel decorrelated. Considering the efficiency (Note that BatchNorm is intergrated in cudnn while IterNorm is based on the pytorch script without optimization), we recommend 1) replace the first BatchNorm; 2) insert extra IterNorm before the first skip connection in resnet; 3) inserted before the final linear classfier as described in the paper.

(4) Some tips related to the hyperparamters (Group size G and Iterative Number T). We recommend G=64 (i.e., the channel number in per group is 64) and T=5 by default. If you run on large batch size (e.g.>1024), you can either increase G or T. For fine tunning, fix G=64 or G=32, and search T={3,4,5,6,7,8} may help.

Owner
Lei Huang
Ph.D in BeiHang University, research interest: deep learning, semi-supervised learning, active learning and their application to visual and textual data.
Lei Huang
A Multi-modal Model Chinese Spell Checker Released on ACL2021.

ReaLiSe ReaLiSe is a multi-modal Chinese spell checking model. This the office code for the paper Read, Listen, and See: Leveraging Multimodal Informa

DaDa 106 Dec 29, 2022
CTF challenges from redpwnCTF 2021

redpwnCTF 2021 Challenges This repository contains challenges from redpwnCTF 2021 in the rCDS format; challenge information is in the challenge.yaml f

redpwn 27 Dec 07, 2022
Implementation of Lie Transformer, Equivariant Self-Attention, in Pytorch

Lie Transformer - Pytorch (wip) Implementation of Lie Transformer, Equivariant Self-Attention, in Pytorch. Only the SE3 version will be present in thi

Phil Wang 78 Oct 26, 2022
[IEEE TPAMI21] MobileSal: Extremely Efficient RGB-D Salient Object Detection [PyTorch & Jittor]

MobileSal IEEE TPAMI 2021: MobileSal: Extremely Efficient RGB-D Salient Object Detection This repository contains full training & testing code, and pr

Yu-Huan Wu 52 Jan 06, 2023
A PaddlePaddle version of Neural Renderer, refer to its PyTorch version

Neural 3D Mesh Renderer in PadddlePaddle A PaddlePaddle version of Neural Renderer, refer to its PyTorch version Install Run: pip install neural-rende

AgentMaker 13 Jul 12, 2022
RoIAlign & crop_and_resize for PyTorch

RoIAlign for PyTorch This is a PyTorch version of RoIAlign. This implementation is based on crop_and_resize and supports both forward and backward on

Long Chen 530 Jan 07, 2023
PyTorch Implementation for Fracture Detection in Wrist Bone X-ray Images

wrist-d PyTorch Implementation for Fracture Detection in Wrist Bone X-ray Images note: Paper: Under Review at MPDI Diagnostics Submission Date: Novemb

Fatih UYSAL 5 Oct 12, 2022
Using VapourSynth with super resolution models and speeding them up with TensorRT.

VSGAN-tensorrt-docker Using image super resolution models with vapoursynth and speeding them up with TensorRT. Using NVIDIA/Torch-TensorRT combined wi

111 Jan 05, 2023
Reproduction process of AlexNet

PaddlePaddle论文复现杂谈 背景 注:该repo基于PaddlePaddle,对AlexNet进行复现。时间仓促,难免有所疏漏,如果问题或者想法,欢迎随时提issue一块交流。 飞桨论文复现赛地址:https://aistudio.baidu.com/aistudio/competitio

19 Nov 29, 2022
A Simple Key-Value Data-store written in Python

mercury-db This is a File Based Key-Value Datastore that supports basic CRUD (Create, Read, Update, Delete) operations developed using Python. The dat

Vaidhyanathan S M 1 Jan 09, 2022
Unofficial PyTorch implementation of "RTM3D: Real-time Monocular 3D Detection from Object Keypoints for Autonomous Driving" (ECCV 2020)

RTM3D-PyTorch The PyTorch Implementation of the paper: RTM3D: Real-time Monocular 3D Detection from Object Keypoints for Autonomous Driving (ECCV 2020

Nguyen Mau Dzung 271 Nov 29, 2022
A pytorch implementation of Detectron. Both training from scratch and inferring directly from pretrained Detectron weights are available.

Use this instead: https://github.com/facebookresearch/maskrcnn-benchmark A Pytorch Implementation of Detectron Example output of e2e_mask_rcnn-R-101-F

Roy 2.8k Dec 29, 2022
3ds-Ghidra-Scripts - Ghidra scripts to help with 3ds reverse engineering

3ds Ghidra Scripts These are ghidra scripts to help with 3ds reverse engineering

Zak 7 May 23, 2022
An offline deep reinforcement learning library

d3rlpy: An offline deep reinforcement learning library d3rlpy is an offline deep reinforcement learning library for practitioners and researchers. imp

Takuma Seno 817 Jan 02, 2023
CUda Matrix Multiply library.

cumm CUda Matrix Multiply library. cumm is developed during learning of CUTLASS, which use too much c++ template and make code unmaintainable. So I de

49 Dec 27, 2022
The 3rd place solution for competition

The 3rd place solution for competition "Lyft Motion Prediction for Autonomous Vehicles" at Kaggle Team behind this solution: Artsiom Sanakoyeu [Homepa

Artsiom 104 Nov 22, 2022
An unopinionated replacement for PyTorch's Dataset and ImageFolder, that handles Tar archives

Simple Tar Dataset An unopinionated replacement for PyTorch's Dataset and ImageFolder classes, for datasets stored as uncompressed Tar archives. Just

Joao Henriques 47 Dec 20, 2022
MIMIC Code Repository: Code shared by the research community for the MIMIC-III database

MIMIC Code Repository The MIMIC Code Repository is intended to be a central hub for sharing, refining, and reusing code used for analysis of the MIMIC

MIT Laboratory for Computational Physiology 1.8k Dec 26, 2022
Madanalysis5 - A package for event file analysis and recasting of LHC results

Welcome to MadAnalysis 5 Outline What is MadAnalysis 5? Requirements Downloading

MadAnalysis 15 Jan 01, 2023
This repository contains datasets and baselines for benchmarking Chinese text recognition.

Benchmarking-Chinese-Text-Recognition This repository contains datasets and baselines for benchmarking Chinese text recognition. Please see the corres

FudanVI Lab 254 Dec 30, 2022