Sequence-tagging using deep learning

Overview

Classification using Deep Learning

Requirements

  • PyTorch version >= 1.9.1+cu111
  • Python version >= 3.8.10
  • PyTorch-Lightning version >= 1.4.9
  • Huggingface Transformers version >= 4.11.3
  • Tensorboard version >= 2.6.0
  • Pandas >= 1.3.4
  • Scikit-learn: numpy>=1.14.6, scipy>=1.1.0, threadpoolctl>=2.0.0, joblib>=0.11

Installation

pip3 install transformers
pip3 install pytorch-lightning
pip3 install tensorboard
pip3 install pandas
pip3 install scikit-learn
git clone https://github.com/vineetk1/clss.git
cd clss

Note that the default directory is clss. Unless otherwise stated, all commands from the Command-Line-Interface must be delivered from the default directory.

Download the dataset

  1. Create a data directory.
mkdir data
  1. Download a dataset in the data directory.

Saving all informtion and results of an experiment

All information about the experiment is stored in a unique directory whose path starts with tensorboard_logs and ends with a unique version-number. Its contents consist of hparams.yaml, hyperperameters_used.yaml, test-results.txt, events.* files, and a checkpoints directory that has one or more checkpoint-files.

Train, validate, and test a model

Following command trains a model, saves the last checkpoint plus checkpoints that have the lowest validation loss, runs the test dataset on the checkpointed model with the lowest validation loss, and outputs the results of the test:

python3 Main.py input_param_files/bert_seq_class

The user-settable hyper-parameters are in the file input_param_files/bert_seq_class. An explanation on the contents of this file is at input_param_files/README.md. A list of all the hyper-parameters is in the PyTorch-Lightning documentation, and any hyper-parameter can be used.
To assist in Training, the two parameters auto_lr_find and auto_scale_batch_size in the file input_param_files/bert_seq_class enable the software to automatically find an initial Learning-Rate and a Batch-Size respectively.
As training progresses, graphs of "training-loss vs. epoch #", "validation-loss vs. epoch #", and "learning-rate vs. batch #" are plotted in real-time on the TensorBoard. Training is stopped by typing, at the Command-Line-Interface, the keystroke ctrl-c. The current training information is checkpointed, and training stops. Training can be resumed, at some future time, from the checkpointed file.
Dueing testing, the results are sent to the standard-output, and also saved in the *test-results.txt" file that include the following: general information about the dataset and the classes, confusion matrix, precision, recall, f1, average f1, and weighted f1.

Resume training, validation, and testing a model with same hyper-parameters

Resume training a checkpoint model with the same model- and training-states by using the following command:

python3 Main.py input_param_files/bert_seq_class-res_from_chkpt

The user-settable hyper-parameters are in the file input_param_files/bert_seq_class-res_from_chkpt. An explanation on the contents of this file is at input_param_files/README.md.

Change hyper-parameters and continue training, validation, and testing a model

Continue training a checkpoint model with the same model-state but different hyperparameters for the training-state by using the following command:

python3 Main.py input_param_files/bert_seq_class-ld_chkpt

The user-settable hyper-parameters are in the file input_param_filesbert_seq_class-ld_chkpt. An explanation on the contents of this file is at input_param_files/README.md.

Further test a checkpoint model with a new dataset

Test a checkpoint model by using the following command:

python3 Main.py input_param_files/bert_seq_class-ld_chkpt_and_test

The user-settable hyper-parameters are in the file input_param_files/bert_seq_class-ld_chkpt_and_test. An explanation on the contents of this file is at input_param_files/README.md.

Owner
Vineet Kumar
Vineet Kumar
The undersampled DWI image using Slice-Interleaved Diffusion Encoding (SIDE) method can be reconstructed by the UNet network.

UNet-SIDE The undersampled DWI image using Slice-Interleaved Diffusion Encoding (SIDE) method can be reconstructed by the UNet network. For Super Reso

TIANTIAN XU 1 Jan 13, 2022
Code for the paper "Training GANs with Stronger Augmentations via Contrastive Discriminator" (ICLR 2021)

Training GANs with Stronger Augmentations via Contrastive Discriminator (ICLR 2021) This repository contains the code for reproducing the paper: Train

Jongheon Jeong 174 Dec 29, 2022
Arxiv harvester - Poor man's simple harvester for arXiv resources

Poor man's simple harvester for arXiv resources This modest Python script takes

Patrice Lopez 5 Oct 18, 2022
A Quick and Dirty Progressive Neural Network written in TensorFlow.

prog_nn .▄▄ · ▄· ▄▌ ▐ ▄ ▄▄▄· ▐ ▄ ▐█ ▀. ▐█▪██▌•█▌▐█▐█ ▄█▪ •█▌▐█ ▄▀▀▀█▄▐█▌▐█▪▐█▐▐▌ ██▀

SynPon 53 Dec 12, 2022
Transformer Huffman coding - Complete Huffman coding through transformer

Transformer_Huffman_coding Complete Huffman coding through transformer 2022/2/19

3 May 19, 2022
Türkiye Canlı Mobese Görüntülerinde Profesyonel Nesne Takip Sistemi

Türkiye Mobese Görüntü Takip Türkiye Mobese görüntülerinde OPENCV ve Yolo ile takip sistemi Multiple Object Tracking System in Turkish Mobese with OPE

15 Dec 22, 2022
Data Engineering ZoomCamp

Data Engineering ZoomCamp I'm partaking in a Data Engineering Bootcamp / Zoomcamp and will be tracking my progress here. I can't promise these notes w

Aaron 61 Jan 06, 2023
Unofficial pytorch implementation of paper "One-Shot Free-View Neural Talking-Head Synthesis for Video Conferencing"

One-Shot Free-View Neural Talking Head Synthesis Unofficial pytorch implementation of paper "One-Shot Free-View Neural Talking-Head Synthesis for Vide

ZLH 406 Dec 23, 2022
Face Mask Detection System built with OpenCV, TensorFlow using Computer Vision concepts

Face mask detection Face Mask Detection System built with OpenCV, TensorFlow using Computer Vision concepts in order to detect face masks in static im

Vaibhav Shukla 1 Oct 27, 2021
《Lerning n Intrinsic Grment Spce for Interctive Authoring of Grment Animtion》

Learning an Intrinsic Garment Space for Interactive Authoring of Garment Animation Overview This is the demo code for training a motion invariant enco

YuanBo 213 Dec 14, 2022
PyTorch code for the NAACL 2021 paper "Improving Generation and Evaluation of Visual Stories via Semantic Consistency"

Improving Generation and Evaluation of Visual Stories via Semantic Consistency PyTorch code for the NAACL 2021 paper "Improving Generation and Evaluat

Adyasha Maharana 28 Dec 08, 2022
A PyTorch-based library for fast prototyping and sharing of deep neural network models.

A PyTorch-based library for fast prototyping and sharing of deep neural network models.

78 Jan 03, 2023
Deep learned, hardware-accelerated 3D object pose estimation

Isaac ROS Pose Estimation Overview This repository provides NVIDIA GPU-accelerated packages for 3D object pose estimation. Using a deep learned pose e

NVIDIA Isaac ROS 41 Dec 18, 2022
Earth Vision Foundation

EVer - A Library for Earth Vision Researcher EVer is a Pytorch-based Python library to simplify the training and inference of the deep learning model.

Zhuo Zheng 34 Nov 26, 2022
Automatically creates genre collections for your Plex media

Plex Auto Genres Plex Auto Genres is a simple script that will add genre collection tags to your media making it much easier to search for genre speci

Shane Israel 63 Dec 31, 2022
Identifying Stroke Indicators Using Rough Sets

Identifying Stroke Indicators Using Rough Sets With the spirit of reproducible research, this repository contains all the codes required to produce th

Muhammad Salman Pathan 0 Jun 09, 2022
FrankMocap: A Strong and Easy-to-use Single View 3D Hand+Body Pose Estimator

FrankMocap pursues an easy-to-use single view 3D motion capture system developed by Facebook AI Research (FAIR). FrankMocap provides state-of-the-art 3D pose estimation outputs for body, hand, and bo

Facebook Research 1.9k Jan 07, 2023
Jupyter Dock is a set of Jupyter Notebooks for performing molecular docking protocols interactively, as well as visualizing, converting file formats and analyzing the results.

Molecular Docking integrated in Jupyter Notebooks Description | Citation | Installation | Examples | Limitations | License Table of content Descriptio

Angel J. Ruiz Moreno 173 Dec 25, 2022
pytorch implementation of GPV-Pose

GPV-Pose Pytorch implementation of GPV-Pose: Category-level Object Pose Estimation via Geometry-guided Point-wise Voting. (link) UPDATE A new version

40 Dec 01, 2022
Orthogonal Over-Parameterized Training

The inductive bias of a neural network is largely determined by the architecture and the training algorithm. To achieve good generalization, how to effectively train a neural network is of great impo

Weiyang Liu 11 Apr 18, 2022