Sequence-tagging using deep learning

Overview

Classification using Deep Learning

Requirements

  • PyTorch version >= 1.9.1+cu111
  • Python version >= 3.8.10
  • PyTorch-Lightning version >= 1.4.9
  • Huggingface Transformers version >= 4.11.3
  • Tensorboard version >= 2.6.0
  • Pandas >= 1.3.4
  • Scikit-learn: numpy>=1.14.6, scipy>=1.1.0, threadpoolctl>=2.0.0, joblib>=0.11

Installation

pip3 install transformers
pip3 install pytorch-lightning
pip3 install tensorboard
pip3 install pandas
pip3 install scikit-learn
git clone https://github.com/vineetk1/clss.git
cd clss

Note that the default directory is clss. Unless otherwise stated, all commands from the Command-Line-Interface must be delivered from the default directory.

Download the dataset

  1. Create a data directory.
mkdir data
  1. Download a dataset in the data directory.

Saving all informtion and results of an experiment

All information about the experiment is stored in a unique directory whose path starts with tensorboard_logs and ends with a unique version-number. Its contents consist of hparams.yaml, hyperperameters_used.yaml, test-results.txt, events.* files, and a checkpoints directory that has one or more checkpoint-files.

Train, validate, and test a model

Following command trains a model, saves the last checkpoint plus checkpoints that have the lowest validation loss, runs the test dataset on the checkpointed model with the lowest validation loss, and outputs the results of the test:

python3 Main.py input_param_files/bert_seq_class

The user-settable hyper-parameters are in the file input_param_files/bert_seq_class. An explanation on the contents of this file is at input_param_files/README.md. A list of all the hyper-parameters is in the PyTorch-Lightning documentation, and any hyper-parameter can be used.
To assist in Training, the two parameters auto_lr_find and auto_scale_batch_size in the file input_param_files/bert_seq_class enable the software to automatically find an initial Learning-Rate and a Batch-Size respectively.
As training progresses, graphs of "training-loss vs. epoch #", "validation-loss vs. epoch #", and "learning-rate vs. batch #" are plotted in real-time on the TensorBoard. Training is stopped by typing, at the Command-Line-Interface, the keystroke ctrl-c. The current training information is checkpointed, and training stops. Training can be resumed, at some future time, from the checkpointed file.
Dueing testing, the results are sent to the standard-output, and also saved in the *test-results.txt" file that include the following: general information about the dataset and the classes, confusion matrix, precision, recall, f1, average f1, and weighted f1.

Resume training, validation, and testing a model with same hyper-parameters

Resume training a checkpoint model with the same model- and training-states by using the following command:

python3 Main.py input_param_files/bert_seq_class-res_from_chkpt

The user-settable hyper-parameters are in the file input_param_files/bert_seq_class-res_from_chkpt. An explanation on the contents of this file is at input_param_files/README.md.

Change hyper-parameters and continue training, validation, and testing a model

Continue training a checkpoint model with the same model-state but different hyperparameters for the training-state by using the following command:

python3 Main.py input_param_files/bert_seq_class-ld_chkpt

The user-settable hyper-parameters are in the file input_param_filesbert_seq_class-ld_chkpt. An explanation on the contents of this file is at input_param_files/README.md.

Further test a checkpoint model with a new dataset

Test a checkpoint model by using the following command:

python3 Main.py input_param_files/bert_seq_class-ld_chkpt_and_test

The user-settable hyper-parameters are in the file input_param_files/bert_seq_class-ld_chkpt_and_test. An explanation on the contents of this file is at input_param_files/README.md.

Owner
Vineet Kumar
Vineet Kumar
The code for 'Deep Residual Fourier Transformation for Single Image Deblurring'

Deep Residual Fourier Transformation for Single Image Deblurring Xintian Mao, Yiming Liu, Wei Shen, Qingli Li and Yan Wang News 2021.12.5 Release Deep

145 Jan 05, 2023
Minimal fastai code needed for working with pytorch

fastai_minima A mimal version of fastai with the barebones needed to work with Pytorch #all_slow Install pip install fastai_minima How to use This lib

Zachary Mueller 14 Oct 21, 2022
Internship Assessment Task for BaggageAI.

BaggageAI Internship Task Problem Statement: You are given two sets of images:- background and threat objects. Background images are the background x-

Arya Shah 10 Nov 14, 2022
A novel Engagement Detection with Multi-Task Training (ED-MTT) system

A novel Engagement Detection with Multi-Task Training (ED-MTT) system which minimizes MSE and triplet loss together to determine the engagement level of students in an e-learning environment.

Onur Çopur 12 Nov 11, 2022
AttGAN: Facial Attribute Editing by Only Changing What You Want (IEEE TIP 2019)

News 11 Jan 2020: We clean up the code to make it more readable! The old version is here: v1. AttGAN TIP Nov. 2019, arXiv Nov. 2017 TensorFlow impleme

Zhenliang He 568 Dec 14, 2022
This repo provides the base code for pytorch-lightning and weight and biases simultaneous integration.

Write your model faster with pytorch-lightning-wadb-code-backbone This repository provides the base code for pytorch-lightning and weight and biases s

9 Mar 29, 2022
Cluttered MNIST Dataset

Cluttered MNIST Dataset A setup script will download MNIST and produce mnist/*.t7 files: luajit download_mnist.lua Example usage: local mnist_clutter

DeepMind 50 Jul 12, 2022
Transformer in Vision

Transformer-in-Vision Recent Transformer-based CV and related works. Welcome to comment/contribute! Keep updated. Resource SCENIC: A JAX Library for C

Yong-Lu Li 1.1k Dec 30, 2022
Realtime segmentation with ENet, the fast and accurate segmentation net.

Enet This is a realtime segmentation net with almost 22 fps on GTX1080 ti, and the model size is very small with only 28M. This repo contains the infe

JinTian 14 Aug 30, 2022
Generating images from caption and vice versa via CLIP-Guided Generative Latent Space Search

CLIP-GLaSS Repository for the paper Generating images from caption and vice versa via CLIP-Guided Generative Latent Space Search An in-browser demo is

Federico Galatolo 172 Dec 22, 2022
Pyramid Grafting Network for One-Stage High Resolution Saliency Detection. CVPR 2022

PGNet Pyramid Grafting Network for One-Stage High Resolution Saliency Detection. CVPR 2022, CVPR 2022 (arXiv 2204.05041) Abstract Recent salient objec

CVTEAM 109 Dec 05, 2022
Project page for the paper Semi-Supervised Raw-to-Raw Mapping 2021.

Project page for the paper Semi-Supervised Raw-to-Raw Mapping 2021.

Mahmoud Afifi 22 Nov 08, 2022
Automated Attendance Project Using Face Recognition

dependencies for project: cmake 3.22.1 dlib 19.22.1 face-recognition 1.3.0 openc

Rohail Taha 1 Jan 09, 2022
Code for reproducing experiments in "Improved Training of Wasserstein GANs"

Improved Training of Wasserstein GANs Code for reproducing experiments in "Improved Training of Wasserstein GANs". Prerequisites Python, NumPy, Tensor

Ishaan Gulrajani 2.2k Jan 01, 2023
CvT-ASSD: Convolutional vision-Transformerbased Attentive Single Shot MultiBox Detector (ICTAI 2021 CCF-C 会议)The 33rd IEEE International Conference on Tools with Artificial Intelligence

CvT-ASSD including extra CvT, CvT-SSD, VGG-ASSD models original-code-website: https://github.com/albert-jin/CvT-SSD new-code-website: https://github.c

金伟强 -上海大学人工智能小渣渣~ 5 Mar 07, 2022
[CVPR 2021] Generative Hierarchical Features from Synthesizing Images

[CVPR 2021] Generative Hierarchical Features from Synthesizing Images

GenForce: May Generative Force Be with You 148 Dec 09, 2022
Generate saved_model, tfjs, tf-trt, EdgeTPU, CoreML, quantized tflite and .pb from .tflite.

tflite2tensorflow Generate saved_model, tfjs, tf-trt, EdgeTPU, CoreML, quantized tflite and .pb from .tflite. 1. Supported Layers No. TFLite Layer TF

Katsuya Hyodo 214 Dec 29, 2022
The repo for reproducing Seed-driven Document Ranking for Systematic Reviews: A Reproducibility Study

ECIR Reproducibility Paper: Seed-driven Document Ranking for Systematic Reviews: A Reproducibility Study This code corresponds to the reproducibility

ielab 3 Mar 31, 2022
Given a 2D triangle mesh, we could randomly generate cloud points that fill in the triangle mesh

generate_cloud_points Given a 2D triangle mesh, we could randomly generate cloud points that fill in the triangle mesh. Run python disp_mesh.py Or you

Peng Yu 2 Dec 24, 2021
Python scripts form performing stereo depth estimation using the high res stereo model in PyTorch .

PyTorch-High-Res-Stereo-Depth-Estimation Python scripts form performing stereo depth estimation using the high res stereo model in PyTorch. Stereo dep

Ibai Gorordo 26 Nov 24, 2022