Pre-Training 3D Point Cloud Transformers with Masked Point Modeling

Overview

Point-BERT: Pre-Training 3D Point Cloud Transformers with Masked Point Modeling

Created by Xumin Yu*, Lulu Tang*, Yongming Rao*, Tiejun Huang, Jie Zhou, Jiwen Lu

[arXiv] [Project Page] [Models]

This repository contains PyTorch implementation for Point-BERT:Pre-Training 3D Point Cloud Transformers with Masked Point Modeling.

Point-BERT is a new paradigm for learning Transformers to generalize the concept of BERT onto 3D point cloud. Inspired by BERT, we devise a Masked Point Modeling (MPM) task to pre-train point cloud Transformers. Specifically, we first divide a point cloud into several local patches, and a point cloud Tokenizer is devised via a discrete Variational AutoEncoder (dVAE) to generate discrete point tokens containing meaningful local information. Then, we randomly mask some patches of input point clouds and feed them into the backbone Transformer. The pre-training objective is to recover the original point tokens at the masked locations under the supervision of point tokens obtained by the Tokenizer.

intro

Pretrained Models

model dataset config url
dVAE ShapeNet config Tsinghua Cloud / BaiDuYun(code:26d3)
Point-BERT ShapeNet config Tsinghua Cloud / BaiDuYun(code:jvtg)
model dataset Acc. Acc. (vote) config url
Transformer ModelNet 92.67 93.24 config Tsinghua Cloud / BaiDuYun(code:tqow)
Transformer ModelNet 92.91 93.48 config Tsinghua Cloud / BaiDuYun(code:tcin)
Transformer ModelNet 93.19 93.76 config Tsinghua Cloud / BaiDuYun(code:k343)
Transformer ScanObjectNN 88.12 -- config Tsinghua Cloud / BaiDuYun(code:f0km)
Transformer ScanObjectNN 87.43 -- config Tsinghua Cloud / BaiDuYun(code:k3cb)
Transformer ScanObjectNN 83.07 -- config Tsinghua Cloud / BaiDuYun(code:rxsw)

Usage

Requirements

  • PyTorch >= 1.7.0
  • python >= 3.7
  • CUDA >= 9.0
  • GCC >= 4.9
  • torchvision
  • timm
  • open3d
  • tensorboardX
pip install -r requirements.txt

Building Pytorch Extensions for Chamfer Distance, PointNet++ and kNN

NOTE: PyTorch >= 1.7 and GCC >= 4.9 are required.

# Chamfer Distance
bash install.sh
# PointNet++
pip install "git+git://github.com/erikwijmans/Pointnet2_PyTorch.git#egg=pointnet2_ops&subdirectory=pointnet2_ops_lib"
# GPU kNN
pip install --upgrade https://github.com/unlimblue/KNN_CUDA/releases/download/0.2/KNN_CUDA-0.2-py3-none-any.whl

Dataset

We use ShapeNet for the training of dVAE and the pre-training of Point-BERT models. And finetuning the Point-BERT models on ModelNet, ScanObjectNN, ShapeNetPart

The details of used datasets can be found in DATASET.md.

dVAE

To train a dVAE by yourself, simply run:

bash scripts/train.sh <GPU_IDS>\
    --config cfgs/ShapeNet55_models/dvae.yaml \
    --exp_name <name>

Visualize the reconstruction results of a pre-trained dVAE, run: (default path: ./vis)

bash ./scripts/test.sh <GPU_IDS> \
    --ckpts <path>\
    --config cfgs/ShapeNet55_models/dvae.yaml\
    --exp_name <name>

Point-BERT pre-training

To pre-train the Point-BERT models on ShapeNet, simply run: (complete the ckpt in cfgs/Mixup_models/Point-BERT.yaml first )

bash ./scripts/dist_train_BERT.sh <NUM_GPU> <port>\
    --config cfgs/Mixup_models/Point-BERT.yaml \
    --exp_name pointBERT_pretrain 
    [--val_freq 10]

val_freq controls the frequence to evaluate the Transformer on ModelNet40 with LinearSVM.

Fine-tuning on downstream tasks

We finetune our Point-BERT on 4 downstream tasks: Classfication on ModelNet40, Few-shot learning on ModelNet40, Transfer learning on ScanObjectNN and Part segmentation on ShapeNetPart.

ModelNet40

To finetune a pre-trained Point-BERT model on ModelNet40, simply run:

# 1024 points
bash ./scripts/train_BERT.sh <GPU_IDS> \
    --config cfgs/ModelNet_models/PointTransformer.yaml\
    --finetune_model\
    --ckpts <path>\
    --exp_name <name>
# 4096 points
bash ./scripts/train_BERT.sh <GPU_IDS>\
    --config cfgs/ModelNet_models/PointTransformer_4096point.yaml\ 
    --finetune_model\ 
    --ckpts <path>\
    --exp_name <name>
# 8192 points
bash ./scripts/train_BERT.sh <GPU_IDS>\
    --config cfgs/ModelNet_models/PointTransformer_8192point.yaml\ 
    --finetune_model\ 
    --ckpts <path>\
    --exp_name <name>

To evaluate a model finetuned on ModelNet40, simply run:

bash ./scripts/test_BERT.sh <GPU_IDS>\
    --config cfgs/ModelNet_models/PointTransformer.yaml \
    --ckpts <path> \
    --exp_name <name>

Few-shot Learning on ModelNet40

We follow the few-shot setting in the previous work.

First, generate your own few-shot learning split or use the same split as us (see DATASET.md).

# generate few-shot learning split
cd datasets/
python generate_few_shot_data.py
# train and evaluate the Point-BERT
bash ./scripts/train_BERT.sh <GPU_IDS> \
    --config cfgs/Fewshot_models/PointTransformer.yaml \
    --finetune_model \
    --ckpts <path> \
    --exp_name <name> \
    --way <int> \
    --shot <int> \
    --fold <int>

ScanObjectNN

To finetune a pre-trained Point-BERT model on ScanObjectNN, simply run:

bash ./scripts/train_BERT.sh <GPU_IDS>  \
    --config cfgs/ScanObjectNN_models/PointTransformer_hardest.yaml \
    --finetune_model \
    --ckpts <path> \
    --exp_name <name>

To evaluate a model on ScanObjectNN, simply run:

bash ./scripts/test_BERT.sh <GPU_IDS>\
    --config cfgs/ScanObjectNN_models/PointTransformer_hardest.yaml \
    --ckpts <path> \
    --exp_name <name>

Part Segmentation

Code coming soon

Visualization

Masked point clouds reconstruction using our Point-BERT model trained on ShapeNet

results

License

MIT License

Citation

If you find our work useful in your research, please consider citing:

@article{yu2021pointbert,
  title={Point-BERT: Pre-Training 3D Point Cloud Transformers with Masked Point Modeling},
  author={Yu, Xumin and Tang, Lulu and Rao, Yongming and Huang, Tiejun and Zhou, Jie and Lu, Jiwen},
  journal={arXiv preprint},
  year={2021}
}
Owner
Lulu Tang
Lulu Tang
Unofficial implementation of the ImageNet, CIFAR 10 and SVHN Augmentation Policies learned by AutoAugment using pillow

AutoAugment - Learning Augmentation Policies from Data Unofficial implementation of the ImageNet, CIFAR10 and SVHN Augmentation Policies learned by Au

Philip Popien 1.3k Jan 02, 2023
No-reference Image Quality Assessment(NIQA) Algorithms (BRISQUE, NIQE, PIQE, RankIQA, MetaIQA)

No-Reference Image Quality Assessment Algorithms No-reference Image Quality Assessment(NIQA) is a task of evaluating an image without a reference imag

Dae-Young Song 26 Jan 04, 2023
Download & Install mods for your favorit game with a few simple clicks

Husko's SteamWorkshop Downloader 🔴 IMPORTANT ❗ 🔴 The Tool is currently being rewritten so updates will be slow and only on the dev branch until it i

Husko 67 Nov 25, 2022
RRL: Resnet as representation for Reinforcement Learning

Resnet as representation for Reinforcement Learning (RRL) is a simple yet effective approach for training behaviors directly from visual inputs. We demonstrate that features learned by standard image

Meta Research 21 Dec 07, 2022
Code for the paper "Curriculum Dropout", ICCV 2017

Curriculum Dropout Dropout is a very effective way of regularizing neural networks. Stochastically "dropping out" units with a certain probability dis

Pietro Morerio 21 Jan 02, 2022
SalFBNet: Learning Pseudo-Saliency Distribution via Feedback Convolutional Networks

SalFBNet This repository includes Pytorch implementation for the following paper: SalFBNet: Learning Pseudo-Saliency Distribution via Feedback Convolu

12 Aug 12, 2022
Tensorflow implementation of "BEGAN: Boundary Equilibrium Generative Adversarial Networks"

BEGAN in Tensorflow Tensorflow implementation of BEGAN: Boundary Equilibrium Generative Adversarial Networks. Requirements Python 2.7 or 3.x Pillow tq

Taehoon Kim 922 Dec 21, 2022
JAX + dataclasses

jax_dataclasses jax_dataclasses provides a wrapper around dataclasses.dataclass for use in JAX, which enables automatic support for: Pytree registrati

Brent Yi 35 Dec 21, 2022
Kaggle-titanic - A tutorial for Kaggle's Titanic: Machine Learning from Disaster competition. Demonstrates basic data munging, analysis, and visualization techniques. Shows examples of supervised machine learning techniques.

Kaggle-titanic This is a tutorial in an IPython Notebook for the Kaggle competition, Titanic Machine Learning From Disaster. The goal of this reposito

Andrew Conti 800 Dec 15, 2022
scikit-learn: machine learning in Python

scikit-learn is a Python module for machine learning built on top of SciPy and is distributed under the 3-Clause BSD license. The project was started

scikit-learn 52.5k Jan 08, 2023
Kaggle | 9th place single model solution for TGS Salt Identification Challenge

UNet for segmenting salt deposits from seismic images with PyTorch. General We, tugstugi and xuyuan, have participated in the Kaggle competition TGS S

Erdene-Ochir Tuguldur 276 Dec 20, 2022
Experiments on continual learning from a stream of pretrained models.

Ex-model CL Ex-model continual learning is a setting where a stream of experts (i.e. model's parameters) is available and a CL model learns from them

Antonio Carta 6 Dec 04, 2022
PyTorch implementation of Towards Accurate Alignment in Real-time 3D Hand-Mesh Reconstruction (ICCV 2021).

Towards Accurate Alignment in Real-time 3D Hand-Mesh Reconstruction Introduction This is official PyTorch implementation of Towards Accurate Alignment

TANG Xiao 96 Dec 27, 2022
A modular, primitive-first, python-first PyTorch library for Reinforcement Learning.

TorchRL Disclaimer This library is not officially released yet and is subject to change. The features are available before an official release so that

Meta Research 860 Jan 07, 2023
Repository for MuSiQue: Multi-hop Questions via Single-hop Question Composition

🎵 MuSiQue: Multi-hop Questions via Single-hop Question Composition This is the repository for our paper "MuSiQue: Multi-hop Questions via Single-hop

21 Jan 02, 2023
"3D Human Texture Estimation from a Single Image with Transformers", ICCV 2021

Texformer: 3D Human Texture Estimation from a Single Image with Transformers This is the official implementation of "3D Human Texture Estimation from

XiangyuXu 193 Dec 05, 2022
Face Transformer for Recognition

Face-Transformer This is the code of Face Transformer for Recognition (https://arxiv.org/abs/2103.14803v2). Recently there has been great interests of

Zhong Yaoyao 153 Nov 30, 2022
AITUS - An atomatic notr maker for CYTUS

AITUS an automatic note maker for CYTUS. 利用AI根据指定乐曲生成CYTUS游戏谱面。 效果展示:https://www

GradiusTwinbee 6 Feb 24, 2022
Hidden-Fold Networks (HFN): Random Recurrent Residuals Using Sparse Supermasks

Hidden-Fold Networks (HFN): Random Recurrent Residuals Using Sparse Supermasks by Ángel López García-Arias, Masanori Hashimoto, Masato Motomura, and J

Ángel López García-Arias 4 May 19, 2022
shufflev2-yolov5:lighter, faster and easier to deploy

shufflev2-yolov5: lighter, faster and easier to deploy. Evolved from yolov5 and the size of model is only 1.7M (int8) and 3.3M (fp16). It can reach 10+ FPS on the Raspberry Pi 4B when the input size

pogg 1.5k Jan 05, 2023