Confidence Propagation Cluster aims to replace NMS-based methods as a better box fusion framework in 2D/3D Object detection

Overview

CP-Cluster

Confidence Propagation Cluster aims to replace NMS-based methods as a better box fusion framework in 2D/3D Object detection, Instance Segmentation:

Confidence Propagation Cluster: Unleash the Full Potential of Object Detectors, Yichun Shen*, Wanli Jiang*, Zhen Xu, Rundong Li, Junghyun Kwon, Siyi Li,

Contact: [email protected]. Welcome for any questions and comments!

Abstract

It’s been a long history that most object detection methods obtain objects by using the non-maximum suppression(NMS) and its improved versions like Soft-NMS to remove redundant bounding boxes. We challenge those NMS-based methods from three aspects: 1) The bounding box with highest confidence value may not be the true positive having the biggest overlap with the ground-truth box. 2) Not only suppression is required for redundant boxes, but also confidence enhancement is needed for those true positives. 3) Sorting candidate boxes by confidence values is not necessary so that full parallelism is achievable.

Inspired by belief propagation (BP), we propose the Confidence Propagation Cluster (CP-Cluster) to replace NMS-based methods, which is fully parallelizable as well as better in accuracy. In CP-Cluster, we borrow the message passing mechanism from BP to penalize redundant boxes and enhance true positives simultaneously in an iterative way until convergence. We verified the effectiveness of CP-Cluster by applying it to various mainstream detectors such as FasterRCNN, SSD, FCOS, YOLOv3, YOLOv5, Centernet etc. Experiments on MS COCO show that our plug and play method, without retraining detectors, is able to steadily improve average mAP of all those state-of-the-art models with a clear margin from 0.2 to 1.9 respectively when compared with NMS-based methods.

Highlights

  • Better accuracy: Compared with all previous NMS-based methods, CP-Cluster manages to achieve better accuracy

  • Fully parallelizable: No box sorting is required, and each candidate box can be handled separately when propagating confidence messages

Main results

Detectors from MMDetection on COCO val/test-dev

Method NMS Soft-NMS CP-Cluster
FRcnn-fpn50 38.4 / 38.7 39.0 / 39.2 39.2 / 39.4
Yolov3 33.5 / 33.5 33.6 / 33.6 34.1 / 34.1
Retina-fpn50 37.4 / 37.7 37.5 / 37.9 38.1 / 38.4
FCOS-X101 42.7 / 42.8 42.7 / 42.8 42.9 / 43.1
AutoAssign-fpn50 40.4 / 40.6 40.5 / 40.7 41.0 / 41.2

Yolov5(v6 model) on COCO val

Model NMS Soft-NMS CP-Cluster
Yolov5s 37.2 37.4 37.5
Yolov5m 45.2 45.3 45.5
Yolov5l 48.8 48.8 49.1
Yolov5x 50.7 50.8 51.0
Yolov5s_1280 44.5 50.8 44.8
Yolov5m_1280 51.1 51.1 51.3
Yolov5l_1280 53.6 53.7 53.8
Yolov5x_1280 54.7 54.8 55.0

Replace maxpooling with CP-Cluster for Centernet(Evaluated on COCO test-dev), where "flip_scale" means flip and multi-scale augmentations

Model maxpool Soft-NMS CP-Cluster
dla34 37.3 38.1 39.2
dla34_flip_scale 41.7 40.6 43.3
hg_104 40.2 40.6 41.1
hg_104_flip_scale 45.2 44.3 46.6

Instance Segmentation(MASK-RCNN, 3X models) from MMDetection on COCO test-dev

Box/Mask AP NMS Soft-NMS CP-Cluster
MRCNN_R50 41.5/37.7 42.0/37.8 42.1/38.0
MRCNN_R101 43.1/38.8 43.6/39.0 43.6/39.1
MRCNN_X101 44.6/40.0 45.2/40.2 45.2/40.2

Integrate into MMCV

Clone the mmcv repo from https://github.com/shenyi0220/mmcv (Cut down by 9/28/2021 from main branch with no extra modifications)

Copy the implementation of "cp_cluster_cpu" in src/nms.cpp to the mmcv nms code("mmcv/ops/csrc/pytorch/nms.cpp")

Borrow the "soft_nms_cpu" API by calling "cp_cluster_cpu" rather than orignal Soft-NMS implementations, so that modify the code like below:

@@ -186,8 +186,8 @@ Tensor softnms(Tensor boxes, Tensor scores, Tensor dets, float iou_threshold,
   if (boxes.device().is_cuda()) {
     AT_ERROR("softnms is not implemented on GPU");
   } else {
-    return softnms_cpu(boxes, scores, dets, iou_threshold, sigma, min_score,
-                       method, offset);
+    return cp_cluster_cpu(boxes, scores, dets, iou_threshold, min_score,
+                          offset, 0.8, 3);
   }
 }

Compile mmcv with source code

MMCV_WITH_OPS=1 pip install -e .

Reproduce Object Detection and Instance Segmentation in MMDetection

Make sure that the MMCV with CP-Cluster has been successfully installed.

Download code from https://github.com/shenyi0220/mmdetection (Cut down by 9/26/2021 from main branch with some config file modifications to call Soft-NMS/CP-Cluster), and install all the dependancies accordingly.

Download models from model zoo

Run below command to reproduce Faster-RCNN-r50-fpn-2x:

python tools/test.py ./configs/faster_rcnn/faster_rcnn_r50_fpn_2x_coco.py ./checkpoints/faster_rcnn_r50_fpn_2x_coco_bbox_mAP-0.384_20200504_210434-a5d8aa15.pth --eval bbox

To check original metrics with NMS, you can switch the model config back to use default NMS.

To check Soft-NMS metrics, just re-compile with mmcv without CP-Cluster modifications.

Reproduce Yolov5

Make sure that the MMCV with CP-Cluster has been successfully installed.

Download code from https://github.com/shenyi0220/yolov5 (Cut down by 11/9/2021 from main branch, replacing the default torchvision.nms with CP-Cluster from mmcv), and install all the dependancies accordingly.

Run below command to reproduce the CP-Cluster exp with yolov5s-v6

python val.py --data coco.yaml --conf 0.001 --iou 0.6 --weights yolov5s.pt --batch-size 32

License

For the time being, this implementation is published with NVIDIA proprietary license, and the only usage of the source code is to reproduce the experiments of CP-Cluster. For any possible commercial use and redistribution of the code, pls contact [email protected]

Open Source Limitation

Due to proprietary and patent limitations, for the time being, only CPU implementation of CP-Cluster is open sourced. Full GPU-implementation and looser open source license are in application process.

Citation

If you find this project useful for your research, please use the following BibTeX entry.

@inproceedings{yichun2021cpcluster,
  title={Confidence Propagation Cluster: Unleash Full Potential of Object Detectors},
  author={Yichun Shen, Wanli Jiang, Zhen Xu, Rundong Li, Junghyun Kwon, Siyi Li},
  booktitle={arXiv preprint arXiv:2112.00342},
  year={2021}
}
Owner
Yichun Shen
Yichun Shen
Source code for the BMVC-2021 paper "SimReg: Regression as a Simple Yet Effective Tool for Self-supervised Knowledge Distillation".

SimReg: A Simple Regression Based Framework for Self-supervised Knowledge Distillation Source code for the paper "SimReg: Regression as a Simple Yet E

9 Oct 15, 2022
A library for building and serving multi-node distributed faiss indices.

About Distributed faiss index service. A lightweight library that lets you work with FAISS indexes which don't fit into a single server memory. It fol

Meta Research 170 Dec 30, 2022
Tensorflow implementation of soft-attention mechanism for video caption generation.

SA-tensorflow Tensorflow implementation of soft-attention mechanism for video caption generation. An example of soft-attention mechanism. The attentio

Paul Chen 153 Nov 14, 2022
Official Code Release for Container : Context Aggregation Network

Container: Context Aggregation Network Official Code Release for Container : Context Aggregation Network Comparion between CNN, MLP-Mixer and Transfor

peng gao 42 Nov 17, 2021
Unofficial PyTorch implementation of "RTM3D: Real-time Monocular 3D Detection from Object Keypoints for Autonomous Driving" (ECCV 2020)

RTM3D-PyTorch The PyTorch Implementation of the paper: RTM3D: Real-time Monocular 3D Detection from Object Keypoints for Autonomous Driving (ECCV 2020

Nguyen Mau Dzung 271 Nov 29, 2022
Neural Lexicon Reader: Reduce Pronunciation Errors in End-to-end TTS by Leveraging External Textual Knowledge

Neural Lexicon Reader: Reduce Pronunciation Errors in End-to-end TTS by Leveraging External Textual Knowledge This is an implementation of the paper,

Mutian He 19 Oct 14, 2022
Title: Heart-Failure-Classification

This Notebook is based off an open source dataset available on where I have created models to classify patients who can potentially witness heart failure on the basis of various parameters. The best

Akarsh Singh 2 Sep 13, 2022
PPO Lagrangian in JAX

PPO Lagrangian in JAX This repository implements PPO in JAX. Implementation is tested on the safety-gym benchmark. Usage Install dependencies using th

Karush Suri 2 Sep 14, 2022
Demystifying How Self-Supervised Features Improve Training from Noisy Labels

Demystifying How Self-Supervised Features Improve Training from Noisy Labels This code is a PyTorch implementation of the paper "[Demystifying How Sel

<a href=[email protected]"> 4 Oct 14, 2022
Machine learning for NeuroImaging in Python

nilearn Nilearn enables approachable and versatile analyses of brain volumes. It provides statistical and machine-learning tools, with instructive doc

919 Dec 25, 2022
SberSwap Video Swap base on deep learning

SberSwap Video Swap base on deep learning

Sber AI 431 Jan 03, 2023
EMNLP 2021 Findings' paper, SCICAP: Generating Captions for Scientific Figures

SCICAP: Scientific Figures Dataset This is the Github repo of the EMNLP 2021 Findings' paper, SCICAP: Generating Captions for Scientific Figures (Hsu

Edward 26 Nov 21, 2022
Easy to use Audio Tagging in PyTorch

Audio Classification, Tagging & Sound Event Detection in PyTorch Progress: Fine-tune on audio classification Fine-tune on audio tagging Fine-tune on s

sithu3 15 Dec 22, 2022
Walk with fastai

Shield: This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License. Walk with fastai What is this p

Walk with fastai 124 Dec 10, 2022
UnivNet: A Neural Vocoder with Multi-Resolution Spectrogram Discriminators for High-Fidelity Waveform Generation

UnivNet UnivNet: A Neural Vocoder with Multi-Resolution Spectrogram Discriminators for High-Fidelity Waveform Generation. Training python train.py --c

Rishikesh (ऋषिकेश) 55 Dec 26, 2022
Training deep models using anime, illustration images.

animeface deep models for anime images. Datasets anime-face-dataset Anime faces collected from Getchu.com. Based on Mckinsey666's dataset. 63.6K image

Tomoya Sawada 61 Dec 25, 2022
Dynamic Neural Representational Decoders for High-Resolution Semantic Segmentation

Dynamic Neural Representational Decoders for High-Resolution Semantic Segmentation Requirements This repository needs mmsegmentation Training To train

20 May 28, 2022
An Implementation of SiameseRPN with Feature Pyramid Networks

SiameseRPN with FPN This project is mainly based on HelloRicky123/Siamese-RPN. What I've done is just add a Feature Pyramid Network method to the orig

3 Apr 16, 2022
A machine learning package for streaming data in Python. The other ancestor of River.

scikit-multiflow is a machine learning package for streaming data in Python. creme and scikit-multiflow are merging into a new project called River. W

670 Dec 30, 2022
Kaggle-titanic - A tutorial for Kaggle's Titanic: Machine Learning from Disaster competition. Demonstrates basic data munging, analysis, and visualization techniques. Shows examples of supervised machine learning techniques.

Kaggle-titanic This is a tutorial in an IPython Notebook for the Kaggle competition, Titanic Machine Learning From Disaster. The goal of this reposito

Andrew Conti 800 Dec 15, 2022