Confidence Propagation Cluster aims to replace NMS-based methods as a better box fusion framework in 2D/3D Object detection

Overview

CP-Cluster

Confidence Propagation Cluster aims to replace NMS-based methods as a better box fusion framework in 2D/3D Object detection, Instance Segmentation:

Confidence Propagation Cluster: Unleash the Full Potential of Object Detectors, Yichun Shen*, Wanli Jiang*, Zhen Xu, Rundong Li, Junghyun Kwon, Siyi Li,

Contact: [email protected]. Welcome for any questions and comments!

Abstract

It’s been a long history that most object detection methods obtain objects by using the non-maximum suppression(NMS) and its improved versions like Soft-NMS to remove redundant bounding boxes. We challenge those NMS-based methods from three aspects: 1) The bounding box with highest confidence value may not be the true positive having the biggest overlap with the ground-truth box. 2) Not only suppression is required for redundant boxes, but also confidence enhancement is needed for those true positives. 3) Sorting candidate boxes by confidence values is not necessary so that full parallelism is achievable.

Inspired by belief propagation (BP), we propose the Confidence Propagation Cluster (CP-Cluster) to replace NMS-based methods, which is fully parallelizable as well as better in accuracy. In CP-Cluster, we borrow the message passing mechanism from BP to penalize redundant boxes and enhance true positives simultaneously in an iterative way until convergence. We verified the effectiveness of CP-Cluster by applying it to various mainstream detectors such as FasterRCNN, SSD, FCOS, YOLOv3, YOLOv5, Centernet etc. Experiments on MS COCO show that our plug and play method, without retraining detectors, is able to steadily improve average mAP of all those state-of-the-art models with a clear margin from 0.2 to 1.9 respectively when compared with NMS-based methods.

Highlights

  • Better accuracy: Compared with all previous NMS-based methods, CP-Cluster manages to achieve better accuracy

  • Fully parallelizable: No box sorting is required, and each candidate box can be handled separately when propagating confidence messages

Main results

Detectors from MMDetection on COCO val/test-dev

Method NMS Soft-NMS CP-Cluster
FRcnn-fpn50 38.4 / 38.7 39.0 / 39.2 39.2 / 39.4
Yolov3 33.5 / 33.5 33.6 / 33.6 34.1 / 34.1
Retina-fpn50 37.4 / 37.7 37.5 / 37.9 38.1 / 38.4
FCOS-X101 42.7 / 42.8 42.7 / 42.8 42.9 / 43.1
AutoAssign-fpn50 40.4 / 40.6 40.5 / 40.7 41.0 / 41.2

Yolov5(v6 model) on COCO val

Model NMS Soft-NMS CP-Cluster
Yolov5s 37.2 37.4 37.5
Yolov5m 45.2 45.3 45.5
Yolov5l 48.8 48.8 49.1
Yolov5x 50.7 50.8 51.0
Yolov5s_1280 44.5 50.8 44.8
Yolov5m_1280 51.1 51.1 51.3
Yolov5l_1280 53.6 53.7 53.8
Yolov5x_1280 54.7 54.8 55.0

Replace maxpooling with CP-Cluster for Centernet(Evaluated on COCO test-dev), where "flip_scale" means flip and multi-scale augmentations

Model maxpool Soft-NMS CP-Cluster
dla34 37.3 38.1 39.2
dla34_flip_scale 41.7 40.6 43.3
hg_104 40.2 40.6 41.1
hg_104_flip_scale 45.2 44.3 46.6

Instance Segmentation(MASK-RCNN, 3X models) from MMDetection on COCO test-dev

Box/Mask AP NMS Soft-NMS CP-Cluster
MRCNN_R50 41.5/37.7 42.0/37.8 42.1/38.0
MRCNN_R101 43.1/38.8 43.6/39.0 43.6/39.1
MRCNN_X101 44.6/40.0 45.2/40.2 45.2/40.2

Integrate into MMCV

Clone the mmcv repo from https://github.com/shenyi0220/mmcv (Cut down by 9/28/2021 from main branch with no extra modifications)

Copy the implementation of "cp_cluster_cpu" in src/nms.cpp to the mmcv nms code("mmcv/ops/csrc/pytorch/nms.cpp")

Borrow the "soft_nms_cpu" API by calling "cp_cluster_cpu" rather than orignal Soft-NMS implementations, so that modify the code like below:

@@ -186,8 +186,8 @@ Tensor softnms(Tensor boxes, Tensor scores, Tensor dets, float iou_threshold,
   if (boxes.device().is_cuda()) {
     AT_ERROR("softnms is not implemented on GPU");
   } else {
-    return softnms_cpu(boxes, scores, dets, iou_threshold, sigma, min_score,
-                       method, offset);
+    return cp_cluster_cpu(boxes, scores, dets, iou_threshold, min_score,
+                          offset, 0.8, 3);
   }
 }

Compile mmcv with source code

MMCV_WITH_OPS=1 pip install -e .

Reproduce Object Detection and Instance Segmentation in MMDetection

Make sure that the MMCV with CP-Cluster has been successfully installed.

Download code from https://github.com/shenyi0220/mmdetection (Cut down by 9/26/2021 from main branch with some config file modifications to call Soft-NMS/CP-Cluster), and install all the dependancies accordingly.

Download models from model zoo

Run below command to reproduce Faster-RCNN-r50-fpn-2x:

python tools/test.py ./configs/faster_rcnn/faster_rcnn_r50_fpn_2x_coco.py ./checkpoints/faster_rcnn_r50_fpn_2x_coco_bbox_mAP-0.384_20200504_210434-a5d8aa15.pth --eval bbox

To check original metrics with NMS, you can switch the model config back to use default NMS.

To check Soft-NMS metrics, just re-compile with mmcv without CP-Cluster modifications.

Reproduce Yolov5

Make sure that the MMCV with CP-Cluster has been successfully installed.

Download code from https://github.com/shenyi0220/yolov5 (Cut down by 11/9/2021 from main branch, replacing the default torchvision.nms with CP-Cluster from mmcv), and install all the dependancies accordingly.

Run below command to reproduce the CP-Cluster exp with yolov5s-v6

python val.py --data coco.yaml --conf 0.001 --iou 0.6 --weights yolov5s.pt --batch-size 32

License

For the time being, this implementation is published with NVIDIA proprietary license, and the only usage of the source code is to reproduce the experiments of CP-Cluster. For any possible commercial use and redistribution of the code, pls contact [email protected]

Open Source Limitation

Due to proprietary and patent limitations, for the time being, only CPU implementation of CP-Cluster is open sourced. Full GPU-implementation and looser open source license are in application process.

Citation

If you find this project useful for your research, please use the following BibTeX entry.

@inproceedings{yichun2021cpcluster,
  title={Confidence Propagation Cluster: Unleash Full Potential of Object Detectors},
  author={Yichun Shen, Wanli Jiang, Zhen Xu, Rundong Li, Junghyun Kwon, Siyi Li},
  booktitle={arXiv preprint arXiv:2112.00342},
  year={2021}
}
Owner
Yichun Shen
Yichun Shen
Tooling for the Common Objects In 3D dataset.

CO3D: Common Objects In 3D This repository contains a set of tools for working with the Common Objects in 3D (CO3D) dataset. Download the dataset The

Facebook Research 724 Jan 06, 2023
Negative Sample is Negative in Its Own Way: Tailoring Negative Sentences forImage-Text Retrieval

NSGDC Some codes in this repo are copied/modified from opensource implementations made available by UNITER, PyTorch, HuggingFace, OpenNMT, and Nvidia.

Zhihao Fan 2 Nov 07, 2022
Elucidating Robust Learning with Uncertainty-Aware Corruption Pattern Estimation

Elucidating Robust Learning with Uncertainty-Aware Corruption Pattern Estimation Introduction 📋 Official implementation of Explainable Robust Learnin

JeongEun Park 6 Apr 19, 2022
Record radiologists' eye gaze when they are labeling images.

Record radiologists' eye gaze when they are labeling images. Read for installation, usage, and deep learning examples. Why use MicEye Versatile As a l

24 Nov 03, 2022
A simple image/video to Desmos graph converter run locally

Desmos Bezier Renderer A simple image/video to Desmos graph converter run locally Sample Result Setup Install dependencies apt update apt install git

Kevin JY Cui 339 Dec 23, 2022
Using NumPy to solve the equations of fluid mechanics together with Finite Differences, explicit time stepping and Chorin's Projection methods

Computational Fluid Dynamics in Python Using NumPy to solve the equations of fluid mechanics 🌊 🌊 🌊 together with Finite Differences, explicit time

Felix Köhler 4 Nov 12, 2022
Tensorflow implementation of our method: "Triangle Graph Interest Network for Click-through Rate Prediction".

TGIN Tensorflow implementation of our method: "Triangle Graph Interest Network for Click-through Rate Prediction". Files in the folder dataset/ electr

Alibaba 21 Dec 21, 2022
Speech Emotion Recognition with Fusion of Acoustic- and Linguistic-Feature-Based Decisions

APSIPA-SER-with-A-and-T This code is the implementation of Speech Emotion Recognition (SER) with acoustic and linguistic features. The network model i

kenro515 3 Jan 04, 2023
MicRank is a Learning to Rank neural channel selection framework where a DNN is trained to rank microphone channels.

MicRank: Learning to Rank Microphones for Distant Speech Recognition Application Scenario Many applications nowadays envision the presence of multiple

Samuele Cornell 20 Nov 10, 2022
Aerial Single-View Depth Completion with Image-Guided Uncertainty Estimation (RA-L/ICRA 2020)

Aerial Depth Completion This work is described in the letter "Aerial Single-View Depth Completion with Image-Guided Uncertainty Estimation", by Lucas

ETHZ V4RL 70 Dec 22, 2022
CLIP (Contrastive Language–Image Pre-training) for Italian

Italian CLIP CLIP (Radford et al., 2021) is a multimodal model that can learn to represent images and text jointly in the same space. In this project,

Italian CLIP 114 Dec 29, 2022
Implementation of Feedback Transformer in Pytorch

Feedback Transformer - Pytorch Simple implementation of Feedback Transformer in Pytorch. They improve on Transformer-XL by having each token have acce

Phil Wang 93 Oct 04, 2022
Yolov5+SlowFast: Realtime Action Detection Based on PytorchVideo

Yolov5+SlowFast: Realtime Action Detection A realtime action detection frame work based on PytorchVideo. Here are some details about our modification:

WuFan 181 Dec 30, 2022
My freqtrade strategies

My freqtrade-strategies Hi there! This is repo for my freqtrade-strategies. My name is Ilya Zelenchuk, I'm a lecturer at the SPbU university (https://

171 Dec 05, 2022
Learning to See by Looking at Noise

Learning to See by Looking at Noise This is the official implementation of Learning to See by Looking at Noise. In this work, we investigate a suite o

Manel Baradad Jurjo 82 Dec 24, 2022
Repo for the paper Extrapolating from a Single Image to a Thousand Classes using Distillation

Extrapolating from a Single Image to a Thousand Classes using Distillation by Yuki M. Asano* and Aaqib Saeed* (*Equal Contribution) Extrapolating from

Yuki M. Asano 16 Nov 04, 2022
Volumetric Correspondence Networks for Optical Flow, NeurIPS 2019.

VCN: Volumetric correspondence networks for optical flow [project website] Requirements python 3.6 pytorch 1.1.0-1.3.0 pytorch correlation module (opt

Gengshan Yang 144 Dec 06, 2022
Fuzzing JavaScript Engines with Aspect-preserving Mutation

DIE Repository for "Fuzzing JavaScript Engines with Aspect-preserving Mutation" (in S&P'20). You can check the paper for technical details. Environmen

gts3.org (<a href=[email protected])"> 190 Dec 11, 2022
Image-based Navigation in Real-World Environments via Multiple Mid-level Representations: Fusion Models Benchmark and Efficient Evaluation

Image-based Navigation in Real-World Environments via Multiple Mid-level Representations: Fusion Models Benchmark and Efficient Evaluation This reposi

First Person Vision @ Image Processing Laboratory - University of Catania 1 Aug 21, 2022