This project aims at building a real-time wide band channel sounder using USRPs

Overview

RFNoC-HLS-WINLAB

Bhargav Gokalgandhi [email protected]

Prasanthi Maddala [email protected]

Ivan Seskar [email protected]

Introduction

This project aims at building a real-time wide band channel sounder using USRPs, which computes the power delay profile of a multi-path channel, and focuses mainly on large scale antenna systems as shown below. This channel sounder is used for computation of the power delay profile of a multipath channel in a massive multiple antenna system in the ORCA framework (https://www.orca-project.eu/).

channel_sounding_demo

A spread spectrum channel sounder as shown below is implemented. channel_sounder_block_diagram

To enable real-time channel sounding at multiple receive antennas at high bandwidths, the computationally intensive task of correlation has been moved to the FPGA. Also, the correlation power (output of correlation module) obtained is averaged over a given number of data symbols in order to reduce the USRP to host data rate.

The system has been tested using USRP X310s on ORBIT testbed. All the X310s in the testbed are synchronized with an external reference clock.

RFNoC Blocks implemented

  1. Spreader
  2. Correlator
  3. Averaging Block

Steps to build Channel sounder

  1. Generate HDL using Vivado HLS   Go to each of the 4 HLS projects (@hls-projects) and run script.tcl - vivado_hls script.tcl   Generated verilog files can be found @solution1/syn/verilog of each folder. NOTE : while generating correlator uncomment either COR_SIZE_256 or COR_SIZE_512 to select a size 256 or size 512 correlator

  2. Move HDL files Move all the contents of fpga-src folder to your local RFNoC installation folder uhd/fpga-src/usrp3/lib/rfnoc/ Move all the HLS generated verilog files (from all the 4 projects) to uhd/fpga-src/usrp3/lib/rfnoc/

  3. Test NoC Blocks In uhd/fpga-src/usrp3/lib/rfnoc/, go to each test bench folder (noc_block_spec_spreader_tb) and run make vsim to run the test bench using Modelsim or run make xsim to use Vivado simulator.

  4. Build Channel sounder Tx In uhd/fpga-src/usrp3/tools/scripts/ run ./uhd_image_builder.py duc spec_spreader -m 4 --fill-with-fifos -d x310 -t X310_RFNOC_HG

  5. Build Channel sounder Rx To use 1 Rx channel in X310 - In uhd/fpga-src/usrp3/tools/scripts/ run ./uhd_image_builder.py ddc correlator cir_avg -m 4 --fill-with-fifos -d x310 -t X310_RFNOC_HG

    To use 2 Rx channels in X310 - In uhd/fpga-src/usrp3/tools/scripts/ run ./uhd_image_builder.py ddc ddc correlator correlator cir_avg cir_avg -m 7 --fill-with-fifos -d x310 -t X310_RFNOC_HG

Run the Channel sounder

Host side application files for the transmit and receive hosts can be found at host/examples. These files and how to run them will be explained in detail in the demo video which will be posted soon.

Owner
Xilinx
GitHub.Com/Xilinx/
Xilinx
Implementation of the paper "Generating Symbolic Reasoning Problems with Transformer GANs"

Generating Symbolic Reasoning Problems with Transformer GANs This is the implementation of the paper Generating Symbolic Reasoning Problems with Trans

Reactive Systems Group 1 Apr 18, 2022
High-Resolution 3D Human Digitization from A Single Image.

PIFuHD: Multi-Level Pixel-Aligned Implicit Function for High-Resolution 3D Human Digitization (CVPR 2020) News: [2020/06/15] Demo with Google Colab (i

Meta Research 8.4k Dec 29, 2022
[ICLR 2021] "Neural Architecture Search on ImageNet in Four GPU Hours: A Theoretically Inspired Perspective" by Wuyang Chen, Xinyu Gong, Zhangyang Wang

Neural Architecture Search on ImageNet in Four GPU Hours: A Theoretically Inspired Perspective [PDF] Wuyang Chen, Xinyu Gong, Zhangyang Wang In ICLR 2

VITA 156 Nov 28, 2022
Pytorch Lightning Distributed Accelerators using Ray

Distributed PyTorch Lightning Training on Ray This library adds new PyTorch Lightning plugins for distributed training using the Ray distributed compu

167 Jan 02, 2023
This repository contains the code for the ICCV 2019 paper "Occupancy Flow - 4D Reconstruction by Learning Particle Dynamics"

Occupancy Flow This repository contains the code for the project Occupancy Flow - 4D Reconstruction by Learning Particle Dynamics. You can find detail

189 Dec 29, 2022
PyTorch implementation of SMODICE: Versatile Offline Imitation Learning via State Occupancy Matching

SMODICE: Versatile Offline Imitation Learning via State Occupancy Matching This is the official PyTorch implementation of SMODICE: Versatile Offline I

Jason Ma 14 Aug 30, 2022
Migration of Edge-based Distributed Federated Learning

FedFly: Towards Migration in Edge-based Distributed Federated Learning About the research Due to mobility, a device participating in Federated Learnin

qub-blesson 11 Nov 13, 2022
SGoLAM - Simultaneous Goal Localization and Mapping

SGoLAM - Simultaneous Goal Localization and Mapping PyTorch implementation of the MultiON runner-up entry, SGoLAM: Simultaneous Goal Localization and

10 Jan 05, 2023
An API-first distributed deployment system of deep learning models using timeseries data to analyze and predict systems behaviour

Gordo Building thousands of models with timeseries data to monitor systems. Table of content About Examples Install Uninstall Developer manual How to

Equinor 26 Dec 27, 2022
Official PyTorch implementation of PS-KD

Self-Knowledge Distillation with Progressive Refinement of Targets (PS-KD) Accepted at ICCV 2021, oral presentation Official PyTorch implementation of

61 Dec 28, 2022
A PyTorch implementation of the Relational Graph Convolutional Network (RGCN).

Torch-RGCN Torch-RGCN is a PyTorch implementation of the RGCN, originally proposed by Schlichtkrull et al. in Modeling Relational Data with Graph Conv

Thiviyan Singam 66 Nov 30, 2022
A tf.keras implementation of Facebook AI's MadGrad optimization algorithm

MADGRAD Optimization Algorithm For Tensorflow This package implements the MadGrad Algorithm proposed in Adaptivity without Compromise: A Momentumized,

20 Aug 18, 2022
Simulation of moving particles under microscopic imaging

Simulation of moving particles under microscopic imaging Install scipy numpy scikit-image tiffile Run python simulation.py Read result https://imagej

Zehao Wang 2 Dec 14, 2021
[ICCV 2021] Amplitude-Phase Recombination: Rethinking Robustness of Convolutional Neural Networks in Frequency Domain

Amplitude-Phase Recombination (ICCV'21) Official PyTorch implementation of "Amplitude-Phase Recombination: Rethinking Robustness of Convolutional Neur

Guangyao Chen 53 Oct 05, 2022
Library for implementing reservoir computing models (echo state networks) for multivariate time series classification and clustering.

Framework overview This library allows to quickly implement different architectures based on Reservoir Computing (the family of approaches popularized

Filippo Bianchi 249 Dec 21, 2022
This is an official implementation of the paper "Distance-aware Quantization", accepted to ICCV2021.

PyTorch implementation of DAQ This is an official implementation of the paper "Distance-aware Quantization", accepted to ICCV2021. For more informatio

CV Lab @ Yonsei University 36 Nov 04, 2022
Chinese Advertisement Board Identification(Pytorch)

Chinese-Advertisement-Board-Identification. We use YoloV5 to extract the ROI of the location of the chinese word. Next, we sort the bounding box and recognize every chinese words which we extracted.

Li-Wei Hsiao 12 Jul 21, 2022
The Surprising Effectiveness of Visual Odometry Techniques for Embodied PointGoal Navigation

PointNav-VO The Surprising Effectiveness of Visual Odometry Techniques for Embodied PointGoal Navigation Project Page | Paper Table of Contents Setup

Xiaoming Zhao 41 Dec 15, 2022
A framework to train language models to learn invariant representations.

Invariant Language Modeling Implementation of the training for invariant language models. Motivation Modern pretrained language models are critical co

6 Nov 16, 2022
A python-image-classification web application project, written in Python and served through the Flask Microframework

A python-image-classification web application project, written in Python and served through the Flask Microframework. This Project implements the VGG16 covolutional neural network, through Keras and

Gerald Maduabuchi 19 Dec 12, 2022