Implementation of Feedback Transformer in Pytorch

Overview

Feedback Transformer - Pytorch

Simple implementation of Feedback Transformer in Pytorch. They improve on Transformer-XL by having each token have access to the representations of all previous layers through time. This is achieved by aggregating the outputs of all layers into a shared memory, which each token across layers can attend to at each time step.

The main drawback is longer training time, due to its non-parallel nature. But I thought I'd build it to further exploration and research into this line of work.

Yannic Kilcher video

I also took the liberty to add some various enhancements, including pre-normalization, GLU gated feedforwards, as well as simplified T5 relative positional embeddings.

Install

$ pip install feedback-transformer-pytorch

Usage

import torch
from feedback_transformer_pytorch import FeedbackTransformer

model = FeedbackTransformer(
    num_tokens = 20000,           # number of tokens
    dim = 512,                    # dimension
    depth = 6,                    # depth
    seq_len = 2,                  # the sequence length of each segment or window
    mem_len = 256,                # length of the memory buffer
    dim_head = 64,                # dimension of each head
    heads = 8,                    # number of heads
    attn_dropout = 0.1,           # attention dropout
    ff_dropout = 0.1              # feedforward dropout
).cuda()

x = torch.randint(0, 20000, (2, 64)).cuda()
model(x)  # (2, 64, 20000)

If you would like to have fine control over the memory (when to detach, etc), you can do it with some extra keyword arguments on .forward

import torch
from feedback_transformer_pytorch import FeedbackTransformer

model = FeedbackTransformer(
    num_tokens = 20000,
    dim = 512,
    depth = 6,
    seq_len = 32,
    mem_len = 256
).cuda()

x1 = torch.randint(0, 20000, (2, 32)).cuda()
x2 = torch.randint(0, 20000, (2, 32)).cuda()
x3 = torch.randint(0, 20000, (2, 32)).cuda()

out1, mem1 = model(x1, return_memory = True)
out2, mem2 = model(x2, memory = mem1, return_memory = True)
out3, mem3 = model(x3, memory = mem2, return_memory = True)  # (2, 32, 20000)

Citations

@misc{fan2021addressing,
    title   = {Addressing Some Limitations of Transformers with Feedback Memory}, 
    author  = {Angela Fan and Thibaut Lavril and Edouard Grave and Armand Joulin and Sainbayar Sukhbaatar},
    year    = {2021},
    eprint  = {2002.09402},
    archivePrefix = {arXiv},
    primaryClass = {cs.LG}
}
Comments
  • Should it really be using lower layers output for keys and values?

    Should it really be using lower layers output for keys and values?

    Could you explain the logic of how the key-value pairs are formed at these lines and whether it is necessary?

    https://github.com/lucidrains/feedback-transformer-pytorch/blob/d7d8939910d1491f01a3d93ce81d4663925fb389/feedback_transformer_pytorch/feedback_transformer_pytorch.py#L146-L151

    It looks to me that line 146 transforms the output of the layer below (x) to keys and values, and the following lines combine these keys and values with the memory. I thought that x should only be used for forming the query here, and only the existing memory is used for keys and values.

    opened by tarvaina 6
  • In place operation with gradient

    In place operation with gradient

    https://github.com/lucidrains/feedback-transformer-pytorch/blob/main/feedback_transformer_pytorch/feedback_transformer_pytorch.py#L173 I think this is an error.

    opened by hadaev8 4
  • Bug in weighted sum

    Bug in weighted sum

    Bug in https://github.com/lucidrains/feedback-transformer-pytorch/blob/main/feedback_transformer_pytorch/feedback_transformer_pytorch.py#L264

    Should be layer_weight = rearrange(layer_weight, 'd -> d () () ()')

    opened by Victor0118 1
  • Input/Output dimensions

    Input/Output dimensions

    Hey @lucidrains

    Can I check the dimensions of the input and output, is it (seq_len, dim) -> (? ,dim, tokens)?

    model = FeedbackTransformer(
        num_tokens = 20000,           # number of tokens
        dim = 512,                    # dimension
        depth = 6,                    # depth
        seq_len = 2,                  # the sequence length of each segment or window
        mem_len = 256,                # length of the memory buffer
        dim_head = 64,                # dimension of each head
        heads = 8,                    # number of heads
        attn_dropout = 0.1,           # attention dropout
        ff_dropout = 0.1              # feedforward dropout
    ).cuda()
    
    x = torch.randint(0, 256, (2, 512)).cuda()
    model(x)  # (1, 512, 20000)
    
    opened by iiSeymour 1
  • Non intuitive memory usage with cross attention

    Non intuitive memory usage with cross attention

    Give simple 256 dim and 512 len tensor and memory len 16 feedback transformer uses 3.6gm memory after forward pass. With cross attention on 100 len tensor usage grows to 14gb.

    While parallel version uses 3.1gb and 3.5gb.

    Notebooks for testing https://colab.research.google.com/drive/1dRImydFn3WthOXdLYIvdf5bsqjXcmhC5?usp=sharing https://colab.research.google.com/drive/1n653j4Pz9_U7OukhTlUbomAHMvpPXwx0?usp=sharing

    opened by hadaev8 0
  • I think mask padding value should be False

    I think mask padding value should be False

    Here https://github.com/lucidrains/feedback-transformer-pytorch/blob/with-cross-attention/feedback_transformer_pytorch/feedback_transformer_pytorch.py#L181

    opened by hadaev8 0
  • ETA for the enwiki8 example

    ETA for the enwiki8 example

    Hey @lucidrains,

    Any eta on the example for auto-regressive enwiki8 example? I and others would really appreciate it as always :)

    Also, if you can provide an example for training on custom line-by-line TXT datasets, it would be absolutely fantastic.

    Thank you.

    opened by asigalov61 0
Owner
Phil Wang
Working with Attention. It's all we need.
Phil Wang
DeepLearning Anomalies Detection with Bluetooth Sensor Data

Final Year Project. Constructing models to create offline anomalies detection using Travel Time Data collected from Bluetooth sensors along the route.

1 Jan 10, 2022
Voice control for Garry's Mod

WIP: Talonvoice GMod integrations Very work in progress voice control demo for Garry's Mod. HOWTO Install https://talonvoice.com/ Press https://i.imgu

Meta Construct 5 Nov 15, 2022
基于pytorch构建cyclegan示例

cyclegan-demo 基于Pytorch构建CycleGAN示例 如何运行 准备数据集 将数据集整理成4个文件,分别命名为 trainA, trainB:训练集,A、B代表两类图片 testA, testB:测试集,A、B代表两类图片 例如 D:\CODE\CYCLEGAN-DEMO\DATA

Koorye 3 Oct 18, 2022
PyTorch implementation of "VRT: A Video Restoration Transformer"

VRT: A Video Restoration Transformer Jingyun Liang, Jiezhang Cao, Yuchen Fan, Kai Zhang, Rakesh Ranjan, Yawei Li, Radu Timofte, Luc Van Gool Computer

Jingyun Liang 837 Jan 09, 2023
Ludwig is a toolbox that allows to train and evaluate deep learning models without the need to write code.

Translated in 🇰🇷 Korean/ Ludwig is a toolbox that allows users to train and test deep learning models without the need to write code. It is built on

Ludwig 8.7k Dec 31, 2022
PantheonRL is a package for training and testing multi-agent reinforcement learning environments.

PantheonRL is a package for training and testing multi-agent reinforcement learning environments. PantheonRL supports cross-play, fine-tuning, ad-hoc coordination, and more.

Stanford Intelligent and Interactive Autonomous Systems Group 57 Dec 28, 2022
ROS support for Velodyne 3D LIDARs

Overview Velodyne1 is a collection of ROS2 packages supporting Velodyne high definition 3D LIDARs3. Warning: The master branch normally contains code

ROS device drivers 543 Dec 30, 2022
Info and sample codes for "NTU RGB+D Action Recognition Dataset"

"NTU RGB+D" Action Recognition Dataset "NTU RGB+D 120" Action Recognition Dataset "NTU RGB+D" is a large-scale dataset for human action recognition. I

Amir Shahroudy 578 Dec 30, 2022
The UI as a mobile display for OP25

OP25 Mobile Control Head A 'remote' control head that interfaces with an OP25 instance. We take advantage of some data end-points left exposed for the

Sarah Rose Giddings 13 Dec 28, 2022
Object tracking and object detection is applied to track golf puts in real time and display stats/games.

Putting_Game Object tracking and object detection is applied to track golf puts in real time and display stats/games. Works best with the Perfect Prac

Max 1 Dec 29, 2021
GPT, but made only out of gMLPs

GPT - gMLP This repository will attempt to crack long context autoregressive language modeling (GPT) using variations of gMLPs. Specifically, it will

Phil Wang 80 Dec 01, 2022
Cross-view Transformers for real-time Map-view Semantic Segmentation (CVPR 2022 Oral)

Cross View Transformers This repository contains the source code and data for our paper: Cross-view Transformers for real-time Map-view Semantic Segme

Brady Zhou 363 Dec 25, 2022
Image Restoration Using Swin Transformer for VapourSynth

SwinIR SwinIR function for VapourSynth, based on https://github.com/JingyunLiang/SwinIR. Dependencies NumPy PyTorch, preferably with CUDA. Note that t

Holy Wu 11 Jun 19, 2022
(Personalized) Page-Rank computation using PyTorch

torch-ppr This package allows calculating page-rank and personalized page-rank via power iteration with PyTorch, which also supports calculation on GP

Max Berrendorf 69 Dec 03, 2022
MiraiML: asynchronous, autonomous and continuous Machine Learning in Python

MiraiML Mirai: future in japanese. MiraiML is an asynchronous engine for continuous & autonomous machine learning, built for real-time usage. Usage In

Arthur Paulino 25 Jul 27, 2022
A colab notebook for training Stylegan2-ada on colab, transfer learning onto your own dataset.

Stylegan2-Ada-Google-Colab-Starter-Notebook A no thrills colab notebook for training Stylegan2-ada on colab. transfer learning onto your own dataset h

Harnick Khera 66 Dec 16, 2022
Official implementation of the paper Image Generators with Conditionally-Independent Pixel Synthesis https://arxiv.org/abs/2011.13775

CIPS -- Official Pytorch Implementation of the paper Image Generators with Conditionally-Independent Pixel Synthesis Requirements pip install -r requi

Multimodal Lab @ Samsung AI Center Moscow 201 Dec 21, 2022
Improving Machine Translation Systems via Isotopic Replacement

CAT (Improving Machine Translation Systems via Isotopic Replacement) Machine translation plays an essential role in people’s daily international commu

Zeyu Sun 10 Nov 30, 2022
Includes PyTorch -> Keras model porting code for ConvNeXt family of models with fine-tuning and inference notebooks.

ConvNeXt-TF This repository provides TensorFlow / Keras implementations of different ConvNeXt [1] variants. It also provides the TensorFlow / Keras mo

Sayak Paul 87 Dec 06, 2022
Python parser for DTED data.

DTED Parser This is a package written in pure python (with help from numpy) to parse and investigate Digital Terrain Elevation Data (DTED) files. This

Ben Bonenfant 12 Dec 18, 2022