Implementation of: "Exploring Randomly Wired Neural Networks for Image Recognition"

Overview

RandWireNN

PWC

Unofficial PyTorch Implementation of: Exploring Randomly Wired Neural Networks for Image Recognition.

Results

Validation result on Imagenet(ILSVRC2012) dataset:

Top 1 accuracy (%) Paper Here
RandWire-WS(4, 0.75), C=78 74.7 69.2
  • (2019.06.26) 69.2%: 250 epoch with SGD optimizer, lr 0.1, momentum 0.9, weight decay 5e-5, cosine annealing lr schedule (no label smoothing applied, see loss curve below)
  • (2019.04.14) 62.6%: 396k steps with SGD optimizer, lr 0.1, momentum 0.9, weigth decay 5e-5, lr decay about 0.1 at 300k
  • (2019.04.12) 62.6%: 416k steps with Adabound optimizer, initial lr 0.001(decayed about 0.1 at 300k), final lr 0.1, no weight decay
  • (2019.04) JiaminRen's implementation reached accuarcy which is almost close to paper, using identical training strategy with paper.
  • (2019.04.10) 63.0%: 450k steps with Adam optimizer, initial lr 0.001, lr decay about 0.1 for every 150k step
  • (2019.04.07) 56.8%: Training took about 16 hours on AWS p3.2xlarge(NVIDIA V100). 120k steps were done in total, and Adam optimizer with lr=0.001, batch_size=128 was used with no learning rate decay.

Dependencies

This code was tested on Python 3.6 with PyTorch 1.0.1. Other packages can be installed by:

pip install -r requirements.txt

Generate random DAG

cd model/graphs
python er.py -p 0.2 -o er-02.txt # Erdos-Renyi
python ba.py -m 7 -o ba-7.txt # Barbasi-Albert
python ws.py -k 4 -p 0.75 ws-4-075.txt # Watts-Strogatz
# number of nodes: -n option

All outputs from commands shown above will produce txt file like:

(number of nodes)
(number of edges)
(lines, each line representing edges)

Train RandWireNN

  1. Download ImageNet dataset. Train/val folder should contain list of 1,000 directories, each containing list of images for corresponding category. For validation image files, this script can be useful: https://raw.githubusercontent.com/soumith/imagenetloader.torch/master/valprep.sh

  2. Edit config.yaml

    cd config
    cp default.yaml config.yaml
    vim config.yaml # specify data directory, graph txt files
  3. Train

    Note. Validation performed here won't use entire test set, since it will consume much time. (about 3 min.)

    python trainer.py -c [config yaml] -m [name]
    
  4. View tensorboardX

    tensorboard --logdir ./logs
    

Validation

Run full validation:

python validation.py -c [config path] -p [checkpoint path]

This will show accuracy and average test loss of the trained model.

Author

Seungwon Park / @seungwonpark

License

Apache License 2.0

Owner
Seung-won Park
SNU Physics + CSE undergrad., [email protected]
Seung-won Park
StyleGAN-Human: A Data-Centric Odyssey of Human Generation

StyleGAN-Human: A Data-Centric Odyssey of Human Generation Abstract: Unconditional human image generation is an important task in vision and graphics,

stylegan-human 762 Jan 08, 2023
retweet 4 satoshi ⚡️

rt4sat retweet 4 satoshi This bot is the codebase for https://twitter.com/rt4sat please feel free to create an issue if you saw any bugs basically thi

6 Sep 30, 2022
Contains a bunch of different python programm tasks

py_tasks Contains a bunch of different python programm tasks Armstrong.py - calculate Armsrong numbers in range from 0 to n with / without cache and c

Dmitry Chmerenko 1 Dec 17, 2021
Enhancing Column Generation by a Machine-Learning-BasedPricing Heuristic for Graph Coloring

Enhancing Column Generation by a Machine-Learning-BasedPricing Heuristic for Graph Coloring (to appear at AAAI 2022) We propose a machine-learning-bas

YunzhuangS 2 May 02, 2022
DeOldify - A Deep Learning based project for colorizing and restoring old images (and video!)

DeOldify - A Deep Learning based project for colorizing and restoring old images (and video!)

Jason Antic 15.8k Jan 04, 2023
Codes for [NeurIPS'21] You are caught stealing my winning lottery ticket! Making a lottery ticket claim its ownership.

You are caught stealing my winning lottery ticket! Making a lottery ticket claim its ownership Codes for [NeurIPS'21] You are caught stealing my winni

VITA 8 Nov 01, 2022
ICCV2021 Paper: AutoShape: Real-Time Shape-Aware Monocular 3D Object Detection

ICCV2021 Paper: AutoShape: Real-Time Shape-Aware Monocular 3D Object Detection

Zongdai 107 Dec 20, 2022
Official PyTorch implementation of "Contrastive Learning from Extremely Augmented Skeleton Sequences for Self-supervised Action Recognition" in AAAI2022.

AimCLR This is an official PyTorch implementation of "Contrastive Learning from Extremely Augmented Skeleton Sequences for Self-supervised Action Reco

Gty 44 Dec 17, 2022
Neural Koopman Lyapunov Control

Neural-Koopman-Lyapunov-Control Code for our paper: Neural Koopman Lyapunov Control Requirements dReal4: v4.19.02.1 PyTorch: 1.2.0 The learning framew

Vrushabh Zinage 6 Dec 24, 2022
Repository providing a wide range of self-supervised pretrained models for computer vision tasks.

Hierarchical Pretraining: Research Repository This is a research repository for reproducing the results from the project "Self-supervised pretraining

Colorado Reed 53 Nov 09, 2022
Official PyTorch code for WACV 2022 paper "CFLOW-AD: Real-Time Unsupervised Anomaly Detection with Localization via Conditional Normalizing Flows"

CFLOW-AD: Real-Time Unsupervised Anomaly Detection with Localization via Conditional Normalizing Flows WACV 2022 preprint:https://arxiv.org/abs/2107.1

Denis 156 Dec 28, 2022
PyTorch ,ONNX and TensorRT implementation of YOLOv4

PyTorch ,ONNX and TensorRT implementation of YOLOv4

4.2k Jan 01, 2023
Incomplete easy-to-use math solver and PDF generator.

Math Expert Let me do your work Preview preview.mp4 Introduction Math Expert is our (@salastro, @younis-tarek, @marawn-mogeb) math high school graduat

SalahDin Ahmed 22 Jul 11, 2022
Codes accompanying the paper "Learning Nearly Decomposable Value Functions with Communication Minimization" (ICLR 2020)

NDQ: Learning Nearly Decomposable Value Functions with Communication Minimization Note This codebase accompanies paper Learning Nearly Decomposable Va

Tonghan Wang 69 Nov 26, 2022
A human-readable PyTorch implementation of "Self-attention Does Not Need O(n^2) Memory"

memory_efficient_attention.pytorch A human-readable PyTorch implementation of "Self-attention Does Not Need O(n^2) Memory" (Rabe&Staats'21). def effic

Ryuichiro Hataya 7 Dec 26, 2022
StyleTransfer - Open source style transfer project, based on VGG19

StyleTransfer - Open source style transfer project, based on VGG19

Patrick martins de lima 9 Dec 13, 2021
Simple Pixelbot for Diablo 2 Resurrected written in python and opencv.

Simple Pixelbot for Diablo 2 Resurrected written in python and opencv. Obviously only use it in offline mode as it is against the TOS of Blizzard to use it in online mode!

468 Jan 03, 2023
Autonomous Driving on Curvy Roads without Reliance on Frenet Frame: A Cartesian-based Trajectory Planning Method

C++/ROS Source Codes for "Autonomous Driving on Curvy Roads without Reliance on Frenet Frame: A Cartesian-based Trajectory Planning Method" published in IEEE Trans. Intelligent Transportation Systems

Bai Li 88 Dec 23, 2022
Unimodal Face Classification with Multimodal Training

Unimodal Face Classification with Multimodal Training This is a PyTorch implementation of the following paper: Unimodal Face Classification with Multi

Wenbin Teng 3 Jul 06, 2022
Python scripts using the Mediapipe models for Halloween.

Mediapipe-Halloween-Examples Python scripts using the Mediapipe models for Halloween. WHY Mainly for fun. But this repository also includes useful exa

Ibai Gorordo 23 Jan 06, 2023