Development Kit for the SoccerNet Challenge

Overview

SoccerNetv2-DevKit

Welcome to the SoccerNet-V2 Development Kit for the SoccerNet Benchmark and Challenge. This kit is meant as a help to get started working with the soccernet data and the proposed tasks. More information about the dataset can be found on our official website.

SoccerNet-v2 is an extension of SoccerNet-v1 with new and challenging tasks including action spotting, camera shot segmentation with boundary detection, and a novel replay grounding task.

The dataset consists of 500 complete soccer games including:

  • Full untrimmed broadcast videos in both low and high resolution.
  • Pre-computed features such as ResNET-152.
  • Annotations of actions among 17 classes (Labels-v2.json).
  • Annotations of camera replays linked to actions (Labels-cameras.json).
  • Annotations of camera changes and camera types for 200 games (Labels-cameras.json).

Participate in our upcoming Challenge in the CVPR 2021 International Challenge on Activity Recognition Workshop and try to win up to 1000$ sponsored by Second Spectrum! All details can be found on the challenge website, or on the main page.

The participation deadline is fixed at the 30th of May 2021. The official rules and guidelines are available on ChallengeRules.md.

How to download SoccerNet-v2

A SoccerNet pip package to easily download the data and the annotations is available.

To install the pip package simply run:

pip install SoccerNet

Please follow the instructions provided in the Download folder of this repository. Do also mind that signing an Non-Disclosure agreement (NDA) is required to access the LQ and HQ videos: NDA.

How to extract video features

As it was one of the most requested features on SoccerNet-V1, this repository provides functions to automatically extract the ResNet-152 features and compute the PCA on your own broadcast videos. These functions allow you to test pre-trained action spotting, camera segmentation or replay grounding models on your own games.

The functions to extract the video features can be found in the Features folder.

Baseline Implementations

This repository contains several baselines for each task which are presented in the SoccerNet-V2 paper, or subsequent papers. You can use these codes to build upon our methods and improve the performances.

Evaluation

This repository and the pip package provide evaluation functions for the three proposed tasks based on predictions saved in the JSON format. See the Evaluation folder of this repository for more details.

Visualizations

Finally, this repository provides the Annotation tool used to annotate the actions, the camera types and the replays. This tool can be used to visualize the information. Please follow the instruction in the dedicated folder for more details.

Citation

For further information check out the paper and supplementary material: https://arxiv.org/abs/2011.13367

Please cite our work if you use our dataset:

@InProceedings{Deliège2020SoccerNetv2,
      title={SoccerNet-v2 : A Dataset and Benchmarks for Holistic Understanding of Broadcast Soccer Videos}, 
      author={Adrien Deliège and Anthony Cioppa and Silvio Giancola and Meisam J. Seikavandi and Jacob V. Dueholm and Kamal Nasrollahi and Bernard Ghanem and Thomas B. Moeslund and Marc Van Droogenbroeck},
      year={2021},
      booktitle = {The IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshops},
      month = {June},
}
Owner
Silvio Giancola
Silvio Giancola
[SIGGRAPH 2022 Journal Track] AvatarCLIP: Zero-Shot Text-Driven Generation and Animation of 3D Avatars

AvatarCLIP: Zero-Shot Text-Driven Generation and Animation of 3D Avatars Fangzhou Hong1*  Mingyuan Zhang1*  Liang Pan1  Zhongang Cai1,2,3  Lei Yang2 

Fangzhou Hong 749 Jan 04, 2023
Code for WSDM 2022 paper, Contrastive Learning for Representation Degeneration Problem in Sequential Recommendation.

DuoRec Code for WSDM 2022 paper, Contrastive Learning for Representation Degeneration Problem in Sequential Recommendation. Usage Download datasets fr

Qrh 46 Dec 19, 2022
Artificial intelligence technology inferring issues and logically supporting facts from raw text

개요 비정형 텍스트를 학습하여 쟁점별 사실과 논리적 근거 추론이 가능한 인공지능 원천기술 Artificial intelligence techno

6 Dec 29, 2021
YOLOv4-v3 Training Automation API for Linux

This repository allows you to get started with training a state-of-the-art Deep Learning model with little to no configuration needed! You provide your labeled dataset or label your dataset using our

BMW TechOffice MUNICH 626 Dec 31, 2022
Set of methods to ensemble boxes from different object detection models, including implementation of "Weighted boxes fusion (WBF)" method.

Set of methods to ensemble boxes from different object detection models, including implementation of "Weighted boxes fusion (WBF)" method.

1.4k Jan 05, 2023
Visyerres sgdf woob - Modules Woob pour l'intranet et autres sites Scouts et Guides de France

Vis'Yerres SGDF - Modules Woob Vous avez le sentiment que l'intranet des Scouts

Thomas Touhey (pas un pseudonyme) 3 Dec 24, 2022
Here is the implementation of our paper S2VC: A Framework for Any-to-Any Voice Conversion with Self-Supervised Pretrained Representations.

S2VC Here is the implementation of our paper S2VC: A Framework for Any-to-Any Voice Conversion with Self-Supervised Pretrained Representations. In thi

81 Dec 15, 2022
DPT: Deformable Patch-based Transformer for Visual Recognition (ACM MM2021)

DPT This repo is the official implementation of DPT: Deformable Patch-based Transformer for Visual Recognition (ACM MM2021). We provide code and model

CASIA-IVA-Lab 111 Dec 21, 2022
Using VapourSynth with super resolution models and speeding them up with TensorRT.

VSGAN-tensorrt-docker Using image super resolution models with vapoursynth and speeding them up with TensorRT. Using NVIDIA/Torch-TensorRT combined wi

111 Jan 05, 2023
Code for One-shot Talking Face Generation from Single-speaker Audio-Visual Correlation Learning (AAAI 2022)

One-shot Talking Face Generation from Single-speaker Audio-Visual Correlation Learning (AAAI 2022) Paper | Demo Requirements Python = 3.6 , Pytorch

FuxiVirtualHuman 84 Jan 03, 2023
A high-performance anchor-free YOLO. Exceeding yolov3~v5 with ONNX, TensorRT, NCNN, and Openvino supported.

YOLOX is an anchor-free version of YOLO, with a simpler design but better performance! It aims to bridge the gap between research and industrial communities. For more details, please refer to our rep

7.7k Jan 06, 2023
All-in-one Docker container that allows a user to explore Nautobot in a lab environment.

Nautobot Lab This container is not for production use! Nautobot Lab is an all-in-one Docker container that allows a user to quickly get an instance of

Nautobot 29 Sep 16, 2022
UIUCTF 2021 Public Challenge Repository

UIUCTF-2021-Public UIUCTF 2021 Public Challenge Repository Notes: every challenge folder contains a challenge.yml file in the format for ctfcli, CTFd'

SIGPwny 15 Nov 03, 2022
Codes for our paper "SentiLARE: Sentiment-Aware Language Representation Learning with Linguistic Knowledge" (EMNLP 2020)

SentiLARE: Sentiment-Aware Language Representation Learning with Linguistic Knowledge Introduction SentiLARE is a sentiment-aware pre-trained language

74 Dec 30, 2022
GMFlow: Learning Optical Flow via Global Matching

GMFlow GMFlow: Learning Optical Flow via Global Matching Authors: Haofei Xu, Jing Zhang, Jianfei Cai, Hamid Rezatofighi, Dacheng Tao We streamline the

Haofei Xu 298 Jan 04, 2023
Nb workflows - A workflow platform which allows you to run parameterized notebooks programmatically

NB Workflows Description If SQL is a lingua franca for querying data, Jupyter sh

Xavier Petit 6 Aug 18, 2022
Fast image augmentation library and easy to use wrapper around other libraries. Documentation: https://albumentations.ai/docs/ Paper about library: https://www.mdpi.com/2078-2489/11/2/125

Albumentations Albumentations is a Python library for image augmentation. Image augmentation is used in deep learning and computer vision tasks to inc

11.4k Jan 09, 2023
MEAL V2: Boosting Vanilla ResNet-50 to 80%+ Top-1 Accuracy on ImageNet without Tricks

MEAL-V2 This is the official pytorch implementation of our paper: "MEAL V2: Boosting Vanilla ResNet-50 to 80%+ Top-1 Accuracy on ImageNet without Tric

Zhiqiang Shen 653 Dec 19, 2022
Project ArXiv Citation Network

Project ArXiv Citation Network Overview This project involved the analysis of the ArXiv citation network. Usage The complete code of this project is i

Dennis Núñez-Fernández 5 Oct 20, 2022
SpeechNAS Better Trade off between Latency and Accuracy for Large Scale Speaker Verification

SpeechNAS Better Trade off between Latency and Accuracy for Large Scale Speaker Verification

Wentao Zhu 24 May 20, 2022