FAST Aiming at the problems of cumbersome steps and slow download speed of GNSS data

Related tags

Deep LearningFAST
Overview

FAST (Fusion Abundant multi-Source data download Terminal)

介绍

FAST 针对目前GNSS数据下载步骤繁琐、下载速度慢等问题,开发了一套较为完备的融合多源数据下载终端软件——FAST。
软件目前包含GNSS科研学习过程中绝大部分所需的数据源,采用并行下载的方式极大的提升了下载的效率。

Git地址

软件特点

  • 多平台:同时支持windows与linux系统;
  • 资源丰富:基本囊括了GNSS科研学习中所需的数据源,目前支持15个大类、62个小类,具体支持数据见数据支持
  • 快速:软件采用并行下载方式,在命令行参数运行模式可自行指定下载线程数,经测试下载100天的brdc+igs+clk文件只需要48.93s!
  • 易拓展:如需支持更多数据源,可在FTP_Source.py、GNSS_TYPE.py中指定所需的数据与数据源;
  • 简单易行:程序有引导下载模式与命令行带参数运行模式两种方式下载,直接运行程序便可进入引导下载模式,命令行带参数运行FAST -h可查看带参数运行模式介绍;
  • 灵活:在带参数运行模式下,用户可灵活指定下载类型、下载位置、下载时间、是否解压、线程数等,可根据自我需求编写bat、shell、python等脚本运行;
  • 轻便:windows程序包仅有18.9 MB,Liunx程序包仅有6.63 MB.

安装教程

  • Windows系统下仅需解压程序包即可直接运行,CMD运行FAST.exe -h可查看带参数运行模式介绍;
  • Linux系统下需安装先导软件wget\lftp\ncompress\python3,以Ubuntu系统为例,于终端中输入以下代码:
apt-get install wget
apt-get install lftp
apt-get install ncompress
apt-get install python3

安装后如windows系统下相同可直接运行程序,或将程序配置至环境变量中。

使用说明

引导下载模式Windows系统双击运行FAST.exe便可进入引导下载,若为Linux系统终端输入FAST运行即可:

  1. 以下载武汉大学多系统精密星历为例,在一级选择目录中选择SP3,即为输入2后回车;
    一级目录

  2. 选择MGEX_WUH_sp3即为输入6并回车,其中MGEX代表多系统,WUH代表武汉大学IGS数据处理中心,SP3代表精密星历; 二级目录

  3. 根据引导输入时间,回车完成输入; 输入时间

  4. 下载完成,根据提示直接回车完成解压或者输入任意字符回车不解压; 下载完成 解压完成

  5. 根据提示输入y再次进入引导或退出;
    在此引导

命令行带参数运行模式Windows系统CMD或power shell运行FAST.exe -h可查看命令行运行帮助,若为Linux系统终端输入FAST -h查看帮助:

  FAST : Fusion Abundant multi-Source data download Terminal
  ©Copyright 2022.01 @ Chang Chuntao
  PLEASE DO NOT SPREAD WITHOUT PERMISSION OF THE AUTHOR !

  Usage: FAST 

  Where the following are some of the options avaiable:

  -v,  --version                   display the version of GDD and exit
  -h,  --help                      print this help
  -t,  --type                      GNSS type, if you need to download multiple data,
                                   Please separate characters with " , "
                                   Example : GPS_brdc,GPS_IGS_sp3,GPS_IGR_clk
  -l,  --loc                       which folder is the download in
  -y,  --year                      where year are the data to be download
  -d,  --day                       where day are the data to be download
  -o,  --day1                      where first day are the data to be download
  -e,  --day2                      where last day are the data to be download
  -m,  --month                     where month are the data to be download
  -u,  --uncomprss Y/N             Y - unzip file (default)
                                   N - do not unzip files
  -f,  --file                      site file directory,The site names in the file are separated by spaces.
                                   Example : bjfs irkj urum
  -p   --process                   number of threads (default 12)

  Example: FAST -t MGEX_IGS_atx
           FAST -t GPS_brdc,GPS_IGS_sp3,GPS_IGR_clk -y 2022 -d 22 -p 30
           FAST -t MGEX_WUH_sp3 -y 2022 -d 22 -u N -l D:\code\CDD\Example
           FAST -t MGEX_IGS_rnx -y 2022 -d 22 -f D:\code\cdd\mgex.txt
           FAST -t IVS_week_snx -y 2022 -m 1

数据支持

  1. BRDC : GPS_brdc / MGEX_brdm

  2. SP3 : GPS_IGS_sp3 / GPS_IGR_sp3 / GPS_IGU_sp3 / GPS_GFZ_sp3 / GPS_GRG_sp3
    MGEX_WUH_sp3 / MGEX_WUHU_sp3 / MGEX_GFZ_sp3 / MGEX_COD_sp3
    MGEX_SHA_sp3 / MGEX_GRG_sp3 / GLO_IGL_sp3

  3. RINEX :GPS_IGS_rnx / MGEX_IGS_rnx / GPS_USA_cors / GPS_HK_cors / GPS_EU_cors
    GPS_AU_cors

  4. CLK : GPS_IGS_clk / GPS_IGR_clk / GPS_IGU_clk / GPS_GFZ_clk / GPS_GRG_clk GPS_IGS_clk_30s MGEX_WUH_clk / MGEX_COD_clk / MGEX_GFZ_clk / MGEX_GRG_clk / WUH_PRIDE_clk

  5. ERP : IGS_erp / WUH_erp / COD_erp / GFZ_erp

  6. BIA : MGEX_WHU_bia / GPS_COD_bia / MGEX_COD_bia / MGEX_GFZ_bia

  7. ION : IGS_ion / WUH_ion / COD_ion

  8. SINEX : IGS_day_snx / IGS_week_snx / IVS_week_snx / ILS_week_snx / IDS_week_snx

  9. CNES_AR : CNES_post / CNES_realtime

  10. ATX : MGEX_IGS_atx

  11. DCB : GPS_COD_dcb / MGEX_CAS_dcb / MGEX_WHU_OSB / P1C1 / P1P2 / P2C2

  12. Time_Series : IGS14_TS_ENU / IGS14_TS_XYZ / Series_TS_Plot

  13. Velocity_Fields : IGS14_Venu / IGS08_Venu / PLATE_Venu

  14. SLR : HY_SLR / GRACE_SLR / BEIDOU_SLR

  15. OBX : GPS_COD_obx / GPS_GRG_obx / MGEX_WUH_obx / MGEX_COD_obx / MGEX_GFZ_obx

  16. TRO : IGS_zpd / COD_tro / JPL_tro / GRID_1x1_VMF3 / GRID_2.5x2_VMF1 / GRID_5x5_VMF3

参与贡献

  1. 常春涛@中国测绘科学研究院
    程序思路、主程序编写、文档编写、程序测试

  2. 蒋科材博士后@武汉大学
    程序思路、并行计算处理思路

  3. 慕任海博士@武汉大学
    程序思路、程序编写、程序测试

  4. 李博博士@辽宁工程技术大学&中国测绘科学研究院
    程序测试、文档编写、节点汇总

  5. 李勇熹@兰州交通大学&中国测绘科学研究院
    程序测试、节点汇总

  6. 曹多明@山东科技大学&中国测绘科学研究院
    程序测试、节点汇总

Owner
ChangChuntao
QQ 1252443496 WECHAT amst-jazz
ChangChuntao
Code for intrusion detection system (IDS) development using CNN models and transfer learning

Intrusion-Detection-System-Using-CNN-and-Transfer-Learning This is the code for the paper entitled "A Transfer Learning and Optimized CNN Based Intrus

Western OC2 Lab 38 Dec 12, 2022
Code for our CVPR2021 paper coordinate attention

Coordinate Attention for Efficient Mobile Network Design (preprint) This repository is a PyTorch implementation of our coordinate attention (will appe

Qibin (Andrew) Hou 726 Jan 05, 2023
Multi-modal Text Recognition Networks: Interactive Enhancements between Visual and Semantic Features

Multi-modal Text Recognition Networks: Interactive Enhancements between Visual and Semantic Features | paper | Official PyTorch implementation for Mul

48 Dec 28, 2022
Replication Package for AequeVox:Automated Fariness Testing for Speech Recognition Systems

AequeVox Replication Package for AequeVox:Automated Fariness Testing for Speech Recognition Systems README under development. Python Packages Required

Sai Sathiesh 2 Aug 28, 2022
Official pytorch implement for “Transformer-Based Source-Free Domain Adaptation”

Official implementation for TransDA Official pytorch implement for “Transformer-Based Source-Free Domain Adaptation”. Overview: Result: Prerequisites:

stanley 54 Dec 22, 2022
PyTorch implementation code for the paper MixCo: Mix-up Contrastive Learning for Visual Representation

How to Reproduce our Results This repository contains PyTorch implementation code for the paper MixCo: Mix-up Contrastive Learning for Visual Represen

opcrisis 46 Dec 15, 2022
Official PyTorch implementation of N-ImageNet: Towards Robust, Fine-Grained Object Recognition with Event Cameras (ICCV 2021)

N-ImageNet: Towards Robust, Fine-Grained Object Recognition with Event Cameras Official PyTorch implementation of N-ImageNet: Towards Robust, Fine-Gra

32 Dec 26, 2022
MultiMix: Sparingly Supervised, Extreme Multitask Learning From Medical Images (ISBI 2021, MELBA 2021)

MultiMix This repository contains the implementation of MultiMix. Our publications for this project are listed below: "MultiMix: Sparingly Supervised,

Ayaan Haque 27 Dec 22, 2022
Agent-based model simulator for air quality and pandemic risk assessment in architectural spaces

Agent-based model simulation for air quality and pandemic risk assessment in architectural spaces. User Guide archABM is a fast and open source agent-

Vicomtech 10 Dec 05, 2022
Learning Skeletal Articulations with Neural Blend Shapes

This repository provides an end-to-end library for automatic character rigging and blend shapes generation as well as a visualization tool. It is based on our work Learning Skeletal Articulations wit

Peizhuo 504 Dec 30, 2022
Implementation for "Manga Filling Style Conversion with Screentone Variational Autoencoder" (SIGGRAPH ASIA 2020 issue)

Manga Filling with ScreenVAE SIGGRAPH ASIA 2020 | Project Website | BibTex This repository is for ScreenVAE introduced in the following paper "Manga F

30 Dec 24, 2022
Dense Passage Retriever - is a set of tools and models for open domain Q&A task.

Dense Passage Retrieval Dense Passage Retrieval (DPR) - is a set of tools and models for state-of-the-art open-domain Q&A research. It is based on the

Meta Research 1.1k Jan 03, 2023
A ssl analyzer which could analyzer target domain's certificate.

ssl_analyzer A ssl analyzer which could analyzer target domain's certificate. Analyze the domain name ssl certificate information according to the inp

vincent 17 Dec 12, 2022
Active window border replacement for window managers.

xborder Active window border replacement for window managers. Usage git clone https://github.com/deter0/xborder cd xborder chmod +x xborders ./xborder

deter 250 Dec 30, 2022
Download & Install mods for your favorit game with a few simple clicks

Husko's SteamWorkshop Downloader 🔴 IMPORTANT ❗ 🔴 The Tool is currently being rewritten so updates will be slow and only on the dev branch until it i

Husko 67 Nov 25, 2022
Training DiffWave using variational method from Variational Diffusion Models.

Variational DiffWave Training DiffWave using variational method from Variational Diffusion Models. Quick Start python train_distributed.py discrete_10

Chin-Yun Yu 26 Dec 13, 2022
Rule-based Customer Segmentation

Rule-based Customer Segmentation Business Problem A game company wants to create level-based new customer definitions (personas) by using some feature

Cem Çaluk 2 Jan 03, 2022
ISTR: End-to-End Instance Segmentation with Transformers (https://arxiv.org/abs/2105.00637)

This is the project page for the paper: ISTR: End-to-End Instance Segmentation via Transformers, Jie Hu, Liujuan Cao, Yao Lu, ShengChuan Zhang, Yan Wa

Jie Hu 182 Dec 19, 2022
The self-supervised goal reaching benchmark introduced in Discovering and Achieving Goals via World Models

Lexa-Benchmark Codebase for the self-supervised goal reaching benchmark introduced in 'Discovering and Achieving Goals via World Models'. Setup Create

1 Oct 14, 2021
Categorical Depth Distribution Network for Monocular 3D Object Detection

CaDDN CaDDN is a monocular-based 3D object detection method. This repository is based off of [OpenPCDet]. Categorical Depth Distribution Network for M

Toronto Robotics and AI Laboratory 289 Jan 05, 2023