A Kitti Road Segmentation model implemented in tensorflow.

Overview

KittiSeg

KittiSeg performs segmentation of roads by utilizing an FCN based model. The model achieved first place on the Kitti Road Detection Benchmark at submission time. Check out our paper for a detailed model description.

The model is designed to perform well on small datasets. The training is done using just 250 densely labelled images. Despite this a state-of-the art MaxF1 score of over 96% is achieved. The model is usable for real-time application. Inference can be performed at the impressive speed of 95ms per image.

The repository contains code for training, evaluating and visualizing semantic segmentation in TensorFlow. It is build to be compatible with the TensorVision back end which allows to organize experiments in a very clean way. Also check out KittiBox a similar projects to perform state-of-the art detection. And finally the MultiNet repository contains code to jointly train segmentation, classification and detection. KittiSeg and KittiBox are utilized as submodules in MultiNet.

Requirements

The code requires Tensorflow 1.0, python 2.7 as well as the following python libraries:

  • matplotlib
  • numpy
  • Pillow
  • scipy
  • commentjson

Those modules can be installed using: pip install numpy scipy pillow matplotlib commentjson or pip install -r requirements.txt.

Setup

  1. Clone this repository: git clone https://github.com/MarvinTeichmann/KittiSeg.git
  2. Initialize all submodules: git submodule update --init --recursive
  3. [Optional] Download Kitti Road Data:
    1. Retrieve kitti data url here: http://www.cvlibs.net/download.php?file=data_road.zip
    2. Call python download_data.py --kitti_url URL_YOU_RETRIEVED

Running the model using demo.py does not require you to download kitti data (step 3). Step 3 is only required if you want to train your own model using train.py or bench a model agains the official evaluation score evaluate.py. Also note, that I recommend using download_data.py instead of downloading the data yourself. The script will also extract and prepare the data. See Section Manage data storage if you like to control where the data is stored.

To update an existing installation do:
  1. Pull all patches: git pull
  2. Update all submodules: git submodule update --init --recursive

If you forget the second step you might end up with an inconstant repository state. You will already have the new code for KittiSeg but run it old submodule versions code. This can work, but I do not run any tests to verify this.

Tutorial

Getting started

Run: python demo.py --input_image data/demo/demo.png to obtain a prediction using demo.png as input.

Run: python evaluate.py to evaluate a trained model.

Run: python train.py --hypes hypes/KittiSeg.json to train a model using Kitti Data.

If you like to understand the code, I would recommend looking at demo.py first. I have documented each step as thoroughly as possible in this file.

Manage Data Storage

KittiSeg allows to separate data storage from code. This is very useful in many server environments. By default, the data is stored in the folder KittiSeg/DATA and the output of runs in KittiSeg/RUNS. This behaviour can be changed by setting the bash environment variables: $TV_DIR_DATA and $TV_DIR_RUNS.

Include export TV_DIR_DATA="/MY/LARGE/HDD/DATA" in your .profile and the all data will be downloaded to /MY/LARGE/HDD/DATA/data_road. Include export TV_DIR_RUNS="/MY/LARGE/HDD/RUNS" in your .profile and all runs will be saved to /MY/LARGE/HDD/RUNS/KittiSeg

RUNDIR and Experiment Organization

KittiSeg helps you to organize large number of experiments. To do so the output of each run is stored in its own rundir. Each rundir contains:

  • output.log a copy of the training output which was printed to your screen
  • tensorflow events tensorboard can be run in rundir
  • tensorflow checkpoints the trained model can be loaded from rundir
  • [dir] images a folder containing example output images. image_iter controls how often the whole validation set is dumped
  • [dir] model_files A copy of all source code need to build the model. This can be very useful of you have many versions of the model.

To keep track of all the experiments, you can give each rundir a unique name with the --name flag. The --project flag will store the run in a separate subfolder allowing to run different series of experiments. As an example, python train.py --project batch_size_bench --name size_5 will use the following dir as rundir: $TV_DIR_RUNS/KittiSeg/batch_size_bench/size_5_KittiSeg_2017_02_08_13.12.

The flag --nosave is very useful to not spam your rundir.

Modifying Model & Train on your own data

The model is controlled by the file hypes/KittiSeg.json. Modifying this file should be enough to train the model on your own data and adjust the architecture according to your needs. A description of the expected input format can be found here.

For advanced modifications, the code is controlled by 5 different modules, which are specified in hypes/KittiSeg.json.

"model": {
   "input_file": "../inputs/kitti_seg_input.py",
   "architecture_file" : "../encoder/fcn8_vgg.py",
   "objective_file" : "../decoder/kitti_multiloss.py",
   "optimizer_file" : "../optimizer/generic_optimizer.py",
   "evaluator_file" : "../evals/kitti_eval.py"
},

Those modules operate independently. This allows easy experiments with different datasets (input_file), encoder networks (architecture_file), etc. Also see TensorVision for a specification of each of those files.

Utilize TensorVision backend

KittiSeg is build on top of the TensorVision TensorVision backend. TensorVision modularizes computer vision training and helps organizing experiments.

To utilize the entire TensorVision functionality install it using

$ cd KittiSeg/submodules/TensorVision
$ python setup.py install

Now you can use the TensorVision command line tools, which includes:

tv-train --hypes hypes/KittiSeg.json trains a json model.
tv-continue --logdir PATH/TO/RUNDIR trains the model in RUNDIR, starting from the last saved checkpoint. Can be used for fine tuning by increasing max_steps in model_files/hypes.json .
tv-analyze --logdir PATH/TO/RUNDIR evaluates the model in RUNDIR

Useful Flags & Variabels

Here are some Flags which will be useful when working with KittiSeg and TensorVision. All flags are available across all scripts.

--hypes : specify which hype-file to use
--logdir : specify which logdir to use
--gpus : specify on which GPUs to run the code
--name : assign a name to the run
--project : assign a project to the run
--nosave : debug run, logdir will be set to debug

In addition the following TensorVision environment Variables will be useful:

$TV_DIR_DATA: specify meta directory for data
$TV_DIR_RUNS: specify meta directory for output
$TV_USE_GPUS: specify default GPU behaviour.

On a cluster it is useful to set $TV_USE_GPUS=force. This will make the flag --gpus mandatory and ensure, that run will be executed on the right GPU.

Questions?

Please have a look into the FAQ. Also feel free to open an issue to discuss any questions not covered so far.

Citation

If you benefit from this code, please cite our paper:

@article{teichmann2016multinet,
  title={MultiNet: Real-time Joint Semantic Reasoning for Autonomous Driving},
  author={Teichmann, Marvin and Weber, Michael and Zoellner, Marius and Cipolla, Roberto and Urtasun, Raquel},
  journal={arXiv preprint arXiv:1612.07695},
  year={2016}
}
Owner
Marvin Teichmann
Germany Phd student. Working on Deep Learning and Computer Vision projects.
Marvin Teichmann
Official PyTorch Implementation of HELP: Hardware-adaptive Efficient Latency Prediction for NAS via Meta-Learning (NeurIPS 2021 Spotlight)

[NeurIPS 2021 Spotlight] HELP: Hardware-adaptive Efficient Latency Prediction for NAS via Meta-Learning [Paper] This is Official PyTorch implementatio

42 Nov 01, 2022
CVPR2020 Counterfactual Samples Synthesizing for Robust VQA

CVPR2020 Counterfactual Samples Synthesizing for Robust VQA This repo contains code for our paper "Counterfactual Samples Synthesizing for Robust Visu

72 Dec 22, 2022
[CVPR 2021] Teachers Do More Than Teach: Compressing Image-to-Image Models (CAT)

CAT arXiv Pytorch implementation of our method for compressing image-to-image models. Teachers Do More Than Teach: Compressing Image-to-Image Models Q

Snap Research 160 Dec 09, 2022
BMVC 2021 Oral: code for BI-GCN: Boundary-Aware Input-Dependent Graph Convolution for Biomedical Image Segmentation

BMVC 2021 BI-GConv: Boundary-Aware Input-Dependent Graph Convolution for Biomedical Image Segmentation Necassary Dependencies: PyTorch 1.2.0 Python 3.

Yanda Meng 15 Nov 08, 2022
toroidal - a lightweight transformer library for PyTorch

toroidal - a lightweight transformer library for PyTorch Toroidal transformers are of smaller size and lower weight than the more common E-I types. Th

MathInf GmbH 64 Jan 07, 2023
Data and extra materials for the food safety publications classifier

Data and extra materials for the food safety publications classifier The subdirectories contain detailed descriptions of their contents in the README.

1 Jan 20, 2022
Baleen: Robust Multi-Hop Reasoning at Scale via Condensed Retrieval (NeurIPS'21)

Baleen Baleen is a state-of-the-art model for multi-hop reasoning, enabling scalable multi-hop search over massive collections for knowledge-intensive

Stanford Future Data Systems 22 Dec 05, 2022
Code for the paper "Reinforced Active Learning for Image Segmentation"

Reinforced Active Learning for Image Segmentation (RALIS) Code for the paper Reinforced Active Learning for Image Segmentation Dependencies python 3.6

Arantxa Casanova 79 Dec 19, 2022
ChainerRL is a deep reinforcement learning library built on top of Chainer.

ChainerRL and PFRL ChainerRL (this repository) is a deep reinforcement learning library that implements various state-of-the-art deep reinforcement al

Chainer 1.1k Jan 01, 2023
COCO Style Dataset Generator GUI

A simple GUI-based COCO-style JSON Polygon masks' annotation tool to facilitate quick and efficient crowd-sourced generation of annotation masks and bounding boxes. Optionally, one could choose to us

Hans Krupakar 142 Dec 09, 2022
GLNet for Memory-Efficient Segmentation of Ultra-High Resolution Images

GLNet for Memory-Efficient Segmentation of Ultra-High Resolution Images Collaborative Global-Local Networks for Memory-Efficient Segmentation of Ultra-

VITA 298 Dec 12, 2022
Progressive Coordinate Transforms for Monocular 3D Object Detection

Progressive Coordinate Transforms for Monocular 3D Object Detection This repository is the official implementation of PCT. Introduction In this paper,

58 Nov 06, 2022
Efficient and Accurate Arbitrary-Shaped Text Detection with Pixel Aggregation Network

Efficient and Accurate Arbitrary-Shaped Text Detection with Pixel Aggregation Network Paddle-PANet 目录 结果对比 论文介绍 快速安装 结果对比 CTW1500 Method Backbone Fine

7 Aug 08, 2022
Pytorch implementation of Rosca, Mihaela, et al. "Variational Approaches for Auto-Encoding Generative Adversarial Networks."

alpha-GAN Unofficial pytorch implementation of Rosca, Mihaela, et al. "Variational Approaches for Auto-Encoding Generative Adversarial Networks." arXi

Victor Shepardson 78 Dec 08, 2022
Nsdf: A mesh SDF with just some code we can directly paste into our raymarcher

nsdf Representing SDFs of arbitrary meshes has been a bit tricky so far. Express

Jan Ivanecky 5 Feb 18, 2022
Provided is code that demonstrates the training and evaluation of the work presented in the paper: "On the Detection of Digital Face Manipulation" published in CVPR 2020.

FFD Source Code Provided is code that demonstrates the training and evaluation of the work presented in the paper: "On the Detection of Digital Face M

88 Nov 22, 2022
Build and run Docker containers leveraging NVIDIA GPUs

NVIDIA Container Toolkit Introduction The NVIDIA Container Toolkit allows users to build and run GPU accelerated Docker containers. The toolkit includ

NVIDIA Corporation 15.6k Jan 01, 2023
Forecasting directional movements of stock prices for intraday trading using LSTM and random forest

Forecasting directional movements of stock-prices for intraday trading using LSTM and random-forest https://arxiv.org/abs/2004.10178 Pushpendu Ghosh,

Pushpendu Ghosh 270 Dec 24, 2022
(ImageNet pretrained models) The official pytorch implemention of the TPAMI paper "Res2Net: A New Multi-scale Backbone Architecture"

Res2Net The official pytorch implemention of the paper "Res2Net: A New Multi-scale Backbone Architecture" Our paper is accepted by IEEE Transactions o

Res2Net Applications 928 Dec 29, 2022
Implementation of "RaScaNet: Learning Tiny Models by Raster-Scanning Image" from CVPR 2021.

RaScaNet: Learning Tiny Models by Raster-Scanning Images Deploying deep convolutional neural networks on ultra-low power systems is challenging, becau

SAIT (Samsung Advanced Institute of Technology) 5 Dec 26, 2022