This is the official code for the paper "Tracker Meets Night: A Transformer Enhancer for UAV Tracking".

Overview

SCT

This is the official code for the paper "Tracker Meets Night: A Transformer Enhancer for UAV Tracking"

The spatial-channel Transformer (SCT) enhancer is a task-inspired low-light enhancer toward facilitating nighttime UAV tracking. Evaluations on the public UAVDark135 and the newly constructed DarkTrack2021 benchmarks demonstrate that the performance gains of SCT brought to nighttime UAV tracking surpass general low-light enhancers.

SCT has been submitted to RA-L with ICRA option.

Environment Preparing

python 3.6
pytorch 1.8.1

Testing

Run lowlight_test.py, the results will be saved in ./result/

cd SCT
python lowlight_test.py 

Training

Before training, you need to prepare the training set of the LOL dataset. Run lowlight_train.py. The model will be saved in ./log/SCT/models

cd SCT
python lowlight_train.py --trainset_path /your/path/to/LOLdataset/

SCT for Nighttime UAV Tracking

To evaluate the performance of SCT in facilitating trackers' nighttime tracking ability, you need to meet the enviroment requirements of base trackers and download their snapshots to corresponding folders at first. Details can be found in their repos. Currently supporting trackers including HiFT, SiamAPN++, SiamRPN++, DiMP18, DiMP50, and PrDiMP50.

For HiFT, SiamAPN++, and SiamRPN++, change directory to their corresponding root, and simply run trackers with “--enhance” option

cd HiFT/SiamAPN++/pysot
python tools/test.py --dataset DarkTrack --enhance

For DiMP18, DiMP50, and PrDiMP50, customized your local paths in pytracking/evaluation/local.py

cd pytracking 
python run_tracker.py --tracker_name dimp --tracker_param dimp18/dimp50/prdimp50 --enhance 

DarkTrack2021 Benchmark

The DarkTrack2021 benchmark comprises 110 challenging sequences with 100K frames in total. All sequences are captured at nighttime in urban scenes with a frame-rate of 30 frames/s (FPS). Some first frames of selected sequences in DarkTrack2021 are displayed below.

first frames

DarkTrack2021 is now available here (password: a4lq).

Demo Video

Demo of SCT

Contact

Junjie Ye Email: [email protected]

Changhong Fu Email: [email protected]

Acknowledgements

A great thanks to Swin-Transformer for providing the basis for this code.

Owner
Intelligent Vision for Robotics in Complex Environment
Adaptive Vision for Robotics in Complex Environment
Intelligent Vision for Robotics in Complex Environment
Avatarify Python - Avatars for Zoom, Skype and other video-conferencing apps.

Avatarify Python - Avatars for Zoom, Skype and other video-conferencing apps.

Ali Aliev 15.3k Jan 05, 2023
Official code repository for the EMNLP 2021 paper

Integrating Visuospatial, Linguistic and Commonsense Structure into Story Visualization PyTorch code for the EMNLP 2021 paper "Integrating Visuospatia

Adyasha Maharana 23 Dec 19, 2022
Data & Code for ACCENTOR Adding Chit-Chat to Enhance Task-Oriented Dialogues

ACCENTOR: Adding Chit-Chat to Enhance Task-Oriented Dialogues Overview ACCENTOR consists of the human-annotated chit-chat additions to the 23.8K dialo

Facebook Research 69 Dec 29, 2022
Unofficial TensorFlow implementation of Protein Interface Prediction using Graph Convolutional Networks.

[TensorFlow] Protein Interface Prediction using Graph Convolutional Networks Unofficial TensorFlow implementation of Protein Interface Prediction usin

YeongHyeon Park 9 Oct 25, 2022
A voice recognition assistant similar to amazon alexa, siri and google assistant.

kenyan-Siri Build an Artificial Assistant Full tutorial (video) To watch the tutorial, click on the image below Installation For windows users (run th

Alison Parker 3 Aug 19, 2022
[CoRL 21'] TANDEM: Tracking and Dense Mapping in Real-time using Deep Multi-view Stereo

TANDEM: Tracking and Dense Mapping in Real-time using Deep Multi-view Stereo Lukas Koestler1*    Nan Yang1,2*,†    Niclas Zeller2,3    Daniel Cremers1

TUM Computer Vision Group 744 Jan 04, 2023
🧠 A PyTorch implementation of 'Deep CORAL: Correlation Alignment for Deep Domain Adaptation.', ECCV 2016

Deep CORAL A PyTorch implementation of 'Deep CORAL: Correlation Alignment for Deep Domain Adaptation. B Sun, K Saenko, ECCV 2016' Deep CORAL can learn

Andy Hsu 200 Dec 25, 2022
TransferNet: Learning Transferrable Knowledge for Semantic Segmentation with Deep Convolutional Neural Network

TransferNet: Learning Transferrable Knowledge for Semantic Segmentation with Deep Convolutional Neural Network Created by Seunghoon Hong, Junhyuk Oh,

42 Jun 29, 2022
Tensorflow implementation of Fully Convolutional Networks for Semantic Segmentation

FCN.tensorflow Tensorflow implementation of Fully Convolutional Networks for Semantic Segmentation (FCNs). The implementation is largely based on the

Sarath Shekkizhar 1.3k Dec 25, 2022
Real-time Object Detection for Streaming Perception, CVPR 2022

StreamYOLO Real-time Object Detection for Streaming Perception Jinrong Yang, Songtao Liu, Zeming Li, Xiaoping Li, Sun Jian Real-time Object Detection

Jinrong Yang 237 Dec 27, 2022
Detecting Blurred Ground-based Sky/Cloud Images

Detecting Blurred Ground-based Sky/Cloud Images With the spirit of reproducible research, this repository contains all the codes required to produce t

1 Oct 20, 2021
A collection of SOTA Image Classification Models in PyTorch

A collection of SOTA Image Classification Models in PyTorch

sithu3 85 Dec 30, 2022
A PyTorch Implementation of Neural IMage Assessment

NIMA: Neural IMage Assessment This is a PyTorch implementation of the paper NIMA: Neural IMage Assessment (accepted at IEEE Transactions on Image Proc

yunxiaos 418 Dec 29, 2022
Unofficial PyTorch implementation of Neural Additive Models (NAM) by Agarwal, et al.

nam-pytorch Unofficial PyTorch implementation of Neural Additive Models (NAM) by Agarwal, et al. [abs, pdf] Installation You can access nam-pytorch vi

Rishabh Anand 11 Mar 14, 2022
Performance Analysis of Multi-user NOMA Wireless-Powered mMTC Networks: A Stochastic Geometry Approach

Performance Analysis of Multi-user NOMA Wireless-Powered mMTC Networks: A Stochastic Geometry Approach Thanh Luan Nguyen, Tri Nhu Do, Georges Kaddoum

Thanh Luan Nguyen 2 Oct 10, 2022
AntiFuzz: Impeding Fuzzing Audits of Binary Executables

AntiFuzz: Impeding Fuzzing Audits of Binary Executables Get the paper here: https://www.usenix.org/system/files/sec19-guler.pdf Usage: The python scri

Chair for Sys­tems Se­cu­ri­ty 88 Dec 21, 2022
Implementation of "Distribution Alignment: A Unified Framework for Long-tail Visual Recognition"(CVPR 2021)

Implementation of "Distribution Alignment: A Unified Framework for Long-tail Visual Recognition"(CVPR 2021)

105 Nov 07, 2022
MTA:SA Server Configer.

MTAConfiger MTA:SA Server Configer. Hi 👋 , I'm Alireza A Python Developer Boy 🔭 I’m currently working on my C# projects 🌱 I’m currently Learning CS

3 Jun 07, 2022
This is an (re-)implementation of DeepLab-ResNet in TensorFlow for semantic image segmentation on the PASCAL VOC dataset.

DeepLab-ResNet-TensorFlow This is an (re-)implementation of DeepLab-ResNet in TensorFlow for semantic image segmentation on the PASCAL VOC dataset. Up

19 Jan 16, 2022
Keras attention models including botnet,CoaT,CoAtNet,CMT,cotnet,halonet,resnest,resnext,resnetd,volo,mlp-mixer,resmlp,gmlp,levit

Keras_cv_attention_models Keras_cv_attention_models Usage Basic Usage Layers Model surgery AotNet ResNetD ResNeXt ResNetQ BotNet VOLO ResNeSt HaloNet

319 Dec 28, 2022