RNG-KBQA: Generation Augmented Iterative Ranking for Knowledge Base Question Answering

Related tags

Deep Learningrng-kbqa
Overview

RNG-KBQA: Generation Augmented Iterative Ranking for Knowledge Base Question Answering

Authors: Xi Ye, Semih Yavuz, Kazuma Hashimoto, Yingbo Zhou and Caiming Xiong

Abstract

main figure

Existing KBQA approaches, despite achieving strong performance on i.i.d. test data, often struggle in generalizing to questions involving unseen KB schema items. Prior rankingbased approaches have shown some success in generalization, but suffer from the coverage issue. We present RnG-KBQA, a Rank-andGenerate approach for KBQA, which remedies the coverage issue with a generation model while preserving a strong generalization capability. Our approach first uses a contrastive ranker to rank a set of candidate logical forms obtained by searching over the knowledge graph. It then introduces a tailored generation model conditioned on the question and the top-ranked candidates to compose the final logical form. We achieve new state-ofthe-art results on GRAILQA and WEBQSP datasets. In particular, our method surpasses the prior state-of-the-art by a large margin on the GRAILQA leaderboard. In addition, RnGKBQA outperforms all prior approaches on the popular WEBQSP benchmark, even including the ones that use the oracle entity linking. The experimental results demonstrate the effectiveness of the interplay between ranking and generation, which leads to the superior performance of our proposed approach across all settings with especially strong improvements in zero-shot generalization.

Paper link: https://arxiv.org/pdf/2109.08678.pdf

Requirements

The code is tested under the following environment setup

  • python==3.8.10
  • pytorch==1.7.0
  • transformers==3.3.1
  • spacy==3.1.1
  • other requirments please see requirements.txt

System requirements:

It's recommended to use a machine with over 300G memory to train the models, and use a machine with 128G memory for inference. However, 256G memory will still be sufficient for runing inference and training all of the models (some tricks for saving memorry is needed in training ranker model for GrailQA).

General Setup

Setup Experiment Directory

Before Running the scripts, please use the setup.sh to setup the experiment folder. Basically it creates some symbolic links in each exp directory.

Setup Freebase

All of the datasets use Freebase as the knowledge source. Please follow Freebase Setup to set up a Virtuoso triplestore service. If you modify the default url, you may need to change the url in /framework/executor/sparql_executor.py accordingly, after starting your virtuoso service,

Reproducing the Results on GrailQA

Please use /GrailQA as the working directory when running experiments on GrailQA.


Prepare dataset and pretrained checkpoints

Dataset

Please download the dataset and put the them under outputs so as to organize dataset as outputs/grailqa_v1.0_train/dev/test.json. (Please rename test-public split to test split).

NER Checkpoints

We use the NER system (under directory entity_linking and entity_linker) from Original GrailQA Code Repo. Please use the following instructions (copied from oringinal repo) to pull related data

Other Checkpoints

Please download the following checkpoints for entity disambiguation, candidate ranking, and augmented generation checkpoints, unzip and put them under checkpoints/ directory

KB Cache

We attach the cache of query results from KB, which can help save some time. Please download the cache file for grailqa, unzip and put them under cache/, so that we have cache/grail-LinkedRelation.bin and cache/grail-TwoHopPath.bin in the place.


Running inference

Demo for Checking the Pipeline

It's recommended to use the one-click demo scripts first to test if everything mentioned above is setup correctly. If it successfully run through, you'll get a final F1 of around 0.86. Please make sure you successfully reproduce the results on this small demo set first, as inference on dev and test can take a long time.

sh scripts/walk_through_demo.sh

Step by Step Instructions

We also provide step-by-step inference instructions as below:

(i) Detecting Entities

Once having the entity linker ready, run

python detect_entity_mention.py --split # eg. --split test

This will write entity mentions to outputs/grail_ _entities.json , we extract up to 10 entities for each mention, which will be further disambiguate in the next step.

!! Running entity detection for the first time will require building surface form index, which can take a long time (but it's only needed for the first time).

(ii) Disambiguating Entities (Entity Linking)

We have provided pretrained ranker model

sh scripts/run_disamb.sh predict

E.g., sh scripts/run_disamb.sh predict checkpoints/grail_bert_entity_disamb test

This will write the prediction results (in the form of selected entity index for each mention) to misc/grail_ _entity_linking.json .

(iii) Enumerating Logical Form Candidates

python enumerate_candidates.py --split --pred_file

E.g., python enumerate_candidates.py --split test --pred_file misc/grail_test_entity_linking.json.

This will write enumerated candidates to outputs/grail_ _candidates-ranking.jsonline .

(iv) Running Ranker

sh scripts/run_ranker.sh predict

E.g., sh scripts/run_ranker.sh predict checkpoints/grail_bert_ranking test

This will write prediction candidate logits (the logits of each candidate for each example) to misc/grail_ _candidates_logits.bin , and prediction result (in original GrailQA prediction format) to misc/grail_ _ranker_results.txt

You may evaluate the ranker results by python grail_evaluate.py

E.g., python grail_evaluate.py outputs/grailqa_v1.0_dev.json misc/grail_dev_ranker_results.txt

(v) Running Generator

First, make prepare generation model inputs

python make_generation_dataset.py --split --logit_file

E.g., python make_generation_dataset.py --split test --logit_file misc/grail_test_candidate_logits.bin.

This will read the canddiates and the use logits to select top-k candidates and write generation model inputs to outputs/grail_ _gen.json .

Second, run generation model to get the top-k prediction

sh scripts/run_gen.sh predict

E.g., sh scripts/run_gen.sh predict checkpoints/grail_t5_generation test.

This will generate top-k decoded logical forms stored at misc/grail_ _topk_generations.json .

(vi) Final Inference Steps

Having the decoded top-k predictions, we'll go down the top-k list, execute the logical form one by one until we find one logical form return valid answers.

python eval_topk_prediction.py --split --pred_file

E.g., python eval_topk_prediction.py --split test --pred_file misc/grail_test_topk_generations.json

prediction result (in original GrailQA prediction format) to misc/grail_ _final_results.txt .

You can then use official GrailQA evaluate script to run evaluation

python grail_evaluate.py

E.g., python grail_evaluate.py outputs/grailqa_v1.0_dev.json misc/grail_dev_final_results.txt


Training Models

We already attached pretrained-models ready for running inference. If you'd like to train your own models please checkout the README at /GrailQA folder.

Reproducing the Results on WebQSP

Please use /WebQSP as the working directory when running experiments on WebQSP.


Prepare dataset and pretrained checkpoints

Dataset

Please download the WebQSP dataset and put the them under outputs so as to organize dataset as outputs/WebQSP.train[test].json.

Evaluation Script

Please make a copy of the official evaluation script (eval/eval.py in the WebQSP zip file) and put the script under this directory (WebQSP) with the name legacy_eval.py.

Model Checkpoints

Please download the following checkpoints for candidate ranking, and augmented generation checkpoints, unzip and put them under checkpoints/ directory

KB Cache

Please download the cache file for webqsp, unzip and put them under cache/ so that we have cache/webqsp-LinkedRelation.bin and cache/webqsp-TwoHopPath.bin in the place.


Running inference

(i) Parsing Sparql-Query to S-Expression

As stated in the paper, we generate s-expressions, which is not provided by the original dataset, so we provide scripts to parse sparql-query to s-expressions.

Run python parse_sparql.py, which will augment original dataset files with s-expressions and save them in outputs as outputs/WebQSP.train.expr.json and outputs/WebQSP.dev.expr.json. Since there is no validation set, we further randomly select 200 examples from the training set for validation, yielding ptrain split and pdev split.

(ii) Entity Detection and Linking using ELQ

This step can be skipped, as we've already include outputs of this step (misc/webqsp_train_elq-5_mid.json, outputs/webqsp_test_elq-5_mid.json).

The scripts and config of ELQ model can be found in elq_linking/run_elq_linker.py. If you'd like to use the script to run entity linking, please copy the run_elq_linker.py python script to ELQ model and run the script there.

(iii) Enumerating Logical Form Candidates

python enumerate_candidates.py --split test

This will write enumerated candidates to outputs/webqsp_test_candidates-ranking.jsonline.

(iv) Runing Ranker

sh scripts/run_ranker.sh predict checkpoints/webqsp_bert_ranking test

This will write prediction candidate logits (the logits of each candidate for each example) to misc/webqsp_test_candidates_logits.bin, and prediction result (in original GrailQA prediction format) to misc/webqsp_test_ranker_results.txt

(v) Running Generator

First, make prepare generation model inputs

python make_generation_dataset.py --split test --logit_file misc/webqsp_test_candidate_logits.bin.

This will read the candidates and the use logits to select top-k candidates and write generation model inputs to outputs/webqsp_test_gen.json.

Second, run generation model to get the top-k prediction

sh scripts/run_gen.sh predict checkpoints/webqsp_t5_generation test

This will generate top-k decoded logical forms stored at misc/webqsp_test_topk_generations.json.

(vi) Final Inference Steps

Having the decoded top-k predictions, we'll go down the top-k list, execute the logical form one by one until we find one logical form return valid answers.

python eval_topk_prediction.py --split test --pred_file misc/webqsp_test_topk_generations.json

Prediction result will be stored (in GrailQA prediction format) to misc/webqsp_test_final_results.txt.

You can then use official WebQSP (only modified in I/O) evaluate script to run evaluation

python webqsp_evaluate.py outputs/WebQSP.test.json misc/webqsp_test_final_results.txt.


Training Models

We already attached pretrained-models ready for running inference. If you'd like to train your own models please checkout the README at /WebQSP folder.

Citation

@misc{ye2021rngkbqa,
    title={RnG-KBQA: Generation Augmented Iterative Ranking for Knowledge Base Question Answering}, 
    author={Xi Ye and Semih Yavuz and Kazuma Hashimoto and Yingbo Zhou and Caiming Xiong},
    year={2021},
    eprint={2109.08678},
    archivePrefix={arXiv},
    primaryClass={cs.CL}
}

Questions?

For any questions, feel free to open issues, or shoot emails to

License

The code is released under BSD 3-Clause - see LICENSE for details.

Owner
Salesforce
A variety of vendor agnostic projects which power Salesforce
Salesforce
Pytorch Lightning 1.2k Jan 06, 2023
SGPT: Multi-billion parameter models for semantic search

SGPT: Multi-billion parameter models for semantic search This repository contains code, results and pre-trained models for the paper SGPT: Multi-billi

Niklas Muennighoff 182 Dec 29, 2022
IJON is an annotation mechanism that analysts can use to guide fuzzers such as AFL.

IJON SPACE EXPLORER IJON is an annotation mechanism that analysts can use to guide fuzzers such as AFL. Using only a small (usually one line) annotati

Chair for Sys­tems Se­cu­ri­ty 146 Dec 16, 2022
This is an official implementation of the CVPR2022 paper "Blind2Unblind: Self-Supervised Image Denoising with Visible Blind Spots".

Blind2Unblind: Self-Supervised Image Denoising with Visible Blind Spots Blind2Unblind Citing Blind2Unblind @inproceedings{wang2022blind2unblind, tit

demonsjin 58 Dec 06, 2022
Simple reimplemetation experiments about FcaNet

FcaNet-CIFAR An implementation of the paper FcaNet: Frequency Channel Attention Networks on CIFAR10/CIFAR100 dataset. how to run Code: python Cifar.py

76 Feb 04, 2021
这是一个利用facenet和retinaface实现人脸识别的库,可以进行在线的人脸识别。

Facenet+Retinaface:人脸识别模型在Keras当中的实现 目录 注意事项 Attention 所需环境 Environment 文件下载 Download 预测步骤 How2predict 参考资料 Reference 注意事项 该库中包含了两个网络,分别是retinaface和fa

Bubbliiiing 31 Nov 15, 2022
Wileless-PDGNet Implementation

Wileless-PDGNet Implementation This repo is related to the following paper: Boning Li, Ananthram Swami, and Santiago Segarra, "Power allocation for wi

6 Oct 04, 2022
Code of our paper "Contrastive Object-level Pre-training with Spatial Noise Curriculum Learning"

CCOP Code of our paper Contrastive Object-level Pre-training with Spatial Noise Curriculum Learning Requirement Install OpenSelfSup Install Detectron2

Chenhongyi Yang 21 Dec 13, 2022
OpenMMLab Pose Estimation Toolbox and Benchmark.

Introduction English | 简体中文 MMPose is an open-source toolbox for pose estimation based on PyTorch. It is a part of the OpenMMLab project. The master b

OpenMMLab 2.8k Dec 31, 2022
[ICCV 2021 Oral] PoinTr: Diverse Point Cloud Completion with Geometry-Aware Transformers

PoinTr: Diverse Point Cloud Completion with Geometry-Aware Transformers Created by Xumin Yu*, Yongming Rao*, Ziyi Wang, Zuyan Liu, Jiwen Lu, Jie Zhou

Xumin Yu 317 Dec 26, 2022
Convert ONNX model graph to Keras model format.

Convert ONNX model graph to Keras model format.

Grigory Malivenko 175 Dec 28, 2022
Sign Language Translation with Transformers (COLING'2020, ECCV'20 SLRTP Workshop)

transformer-slt This repository gathers data and code supporting the experiments in the paper Better Sign Language Translation with STMC-Transformer.

Kayo Yin 107 Dec 27, 2022
Official repository of ICCV21 paper "Viewpoint Invariant Dense Matching for Visual Geolocalization"

Viewpoint Invariant Dense Matching for Visual Geolocalization: PyTorch implementation This is the implementation of the ICCV21 paper: G Berton, C. Mas

Gabriele Berton 44 Jan 03, 2023
The aim of the game, as in the original one, is to find a specific image from a group of different images of a person's face

GUESS WHO Main Links: [Github] [App] Related Links: [CLIP] [Celeba] The aim of the game, as in the original one, is to find a specific image from a gr

Arnau - DIMAI 3 Jan 04, 2022
Implementation for On Provable Benefits of Depth in Training Graph Convolutional Networks

Implementation for On Provable Benefits of Depth in Training Graph Convolutional Networks Setup This implementation is based on PyTorch = 1.0.0. Smal

Weilin Cong 8 Oct 28, 2022
Spectralformer: Rethinking hyperspectral image classification with transformers

Spectralformer: Rethinking hyperspectral image classification with transformers Danfeng Hong, Zhu Han, Jing Yao, Lianru Gao, Bing Zhang, Antonio Plaza

Danfeng Hong 102 Dec 29, 2022
Multi-Scale Vision Longformer: A New Vision Transformer for High-Resolution Image Encoding

Vision Longformer This project provides the source code for the vision longformer paper. Multi-Scale Vision Longformer: A New Vision Transformer for H

Microsoft 209 Dec 30, 2022
CSPML (crystal structure prediction with machine learning-based element substitution)

CSPML (crystal structure prediction with machine learning-based element substitution) CSPML is a unique methodology for the crystal structure predicti

8 Dec 20, 2022
UnsupervisedR&R: Unsupervised Pointcloud Registration via Differentiable Rendering

UnsupervisedR&R: Unsupervised Pointcloud Registration via Differentiable Rendering This repository holds all the code and data for our recent work on

Mohamed El Banani 118 Dec 06, 2022
Official Pytorch implementation of "Unbiased Classification Through Bias-Contrastive and Bias-Balanced Learning (NeurIPS 2021)

Unbiased Classification Through Bias-Contrastive and Bias-Balanced Learning (NeurIPS 2021) Official Pytorch implementation of Unbiased Classification

Youngkyu 17 Jan 01, 2023