Meta-TTS: Meta-Learning for Few-shot SpeakerAdaptive Text-to-Speech

Overview

Meta-TTS: Meta-Learning for Few-shot SpeakerAdaptive Text-to-Speech

This repository is the official implementation of "Meta-TTS: Meta-Learning for Few-shot SpeakerAdaptive Text-to-Speech".

multi-task learning meta learning

Meta-TTS

image

Requirements

This is how I build my environment, which is not exactly needed to be the same:

  • Sign up for Comet.ml, find out your workspace and API key via www.comet.ml/api/my/settings and fill them in config/comet.py. Comet logger is used throughout train/val/test stages.
    • Check my training logs here.
  • [Optional] Install pyenv for Python version control, change to Python 3.8.6.
# After download and install pyenv:
pyenv install 3.8.6
pyenv local 3.8.6
  • [Optional] Install pyenv-virtualenv as a plugin of pyenv for clean virtual environment.
# After install pyenv-virtualenv
pyenv virtualenv meta-tts
pyenv activate meta-tts
# Install Cython first:
pip install cython

# Then install learn2learn from source:
git clone https://github.com/learnables/learn2learn.git
cd learn2learn
pip install -e .
  • Install requirements:
pip install -r requirements.txt

Proprocessing

First, download LibriTTS and VCTK, then change the paths in config/LibriTTS/preprocess.yaml and config/VCTK/preprocess.yaml, then run

python3 prepare_align.py config/LibriTTS/preprocess.yaml
python3 prepare_align.py config/VCTK/preprocess.yaml

for some preparations.

Alignments of LibriTTS is provided here, and the alignments of VCTK is provided here. You have to unzip the files into preprocessed_data/LibriTTS/TextGrid/ and preprocessed_data/VCTK/TextGrid/.

Then run the preprocessing script:

python3 preprocess.py config/LibriTTS/preprocess.yaml

# Copy stats from LibriTTS to VCTK to keep pitch/energy normalization the same shift and bias.
cp preprocessed_data/LibriTTS/stats.json preprocessed_data/VCTK/

python3 preprocess.py config/VCTK/preprocess.yaml

Training

To train the models in the paper, run this command:

python3 main.py -s train \
                -p config/preprocess/<corpus>.yaml \
                -m config/model/base.yaml \
                -t config/train/base.yaml config/train/<corpus>.yaml \
                -a config/algorithm/<algorithm>.yaml

To reproduce, please use 8 V100 GPUs for meta models, and 1 V100 GPU for baseline models, or else you might need to tune gradient accumulation step (grad_acc_step) setting in config/train/base.yaml to get the correct meta batch size. Note that each GPU has its own random seed, so even the meta batch size is the same, different number of GPUs is equivalent to different random seed.

After training, you can find your checkpoints under output/ckpt/ / / /checkpoints/ , where the project name is set in config/comet.py.

To inference the models, run:

python3 main.py -s test \
                -p config/preprocess/<corpus>.yaml \
                -m config/model/base.yaml \
                -t config/train/base.yaml config/train/<corpus>.yaml \
                -a config/algorithm/<algorithm>.yaml \
                -e <experiment_key> -c <checkpoint_file_name>

and the results would be under output/result/ / / / .

Evaluation

Note: The evaluation code is not well-refactored yet.

cd evaluation/ and check README.md

Pre-trained Models

Note: The checkpoints are with older version, might not capatiable with the current code. We would fix the problem in the future.

Since our codes are using Comet logger, you might need to create a dummy experiment by running:

from comet_ml import Experiment
experiment = Experiment()

then put the checkpoint files under output/ckpt/LibriTTS/ / /checkpoints/ .

You can download pretrained models here.

Results

Corpus LibriTTS VCTK
Speaker Similarity
Speaker Verification

Synthesized Speech Detection

Owner
Sung-Feng Huang
A Ph.D. student at National Taiwan University. Main research includes unsupervised learning, meta learning, speech separation, ASR, and some NLP.
Sung-Feng Huang
[ICCV 2021 Oral] NerfingMVS: Guided Optimization of Neural Radiance Fields for Indoor Multi-view Stereo

NerfingMVS Project Page | Paper | Video | Data NerfingMVS: Guided Optimization of Neural Radiance Fields for Indoor Multi-view Stereo Yi Wei, Shaohui

Yi Wei 369 Dec 24, 2022
Framework for evaluating ANNS algorithms on billion scale datasets.

Billion-Scale ANN http://big-ann-benchmarks.com/ Install The only prerequisite is Python (tested with 3.6) and Docker. Works with newer versions of Py

Harsha Vardhan Simhadri 132 Dec 24, 2022
Scalable Optical Flow-based Image Montaging and Alignment

SOFIMA SOFIMA (Scalable Optical Flow-based Image Montaging and Alignment) is a tool for stitching, aligning and warping large 2d, 3d and 4d microscopy

Google Research 16 Dec 21, 2022
The materials used in the SaxonJS tutorial presented at Declarative Amsterdam, 2021

SaxonJS-Tutorial-2021, version 1.0.4 Last updated on 4 November, 2021. Table of contents Background Prerequisites Starting a web server Running a Java

Saxonica 11 Oct 23, 2022
Repo for EMNLP 2021 paper "Beyond Preserved Accuracy: Evaluating Loyalty and Robustness of BERT Compression"

beyond-preserved-accuracy Repo for EMNLP 2021 paper "Beyond Preserved Accuracy: Evaluating Loyalty and Robustness of BERT Compression" How to implemen

Kevin Canwen Xu 10 Dec 23, 2022
CLEAR algorithm for multi-view data association

CLEAR: Consistent Lifting, Embedding, and Alignment Rectification Algorithm The Matlab, Python, and C++ implementation of the CLEAR algorithm, as desc

MIT Aerospace Controls Laboratory 30 Jan 02, 2023
A collection of semantic image segmentation models implemented in TensorFlow

A collection of semantic image segmentation models implemented in TensorFlow. Contains data-loaders for the generic and medical benchmark datasets.

bobby 16 Dec 06, 2019
social humanoid robots with GPGPU and IoT

Social humanoid robots with GPGPU and IoT Social humanoid robots with GPGPU and IoT Paper Authors Mohsen Jafarzadeh, Stephen Brooks, Shimeng Yu, Balak

0 Jan 07, 2022
GLaRA: Graph-based Labeling Rule Augmentation for Weakly Supervised Named Entity Recognition

GLaRA: Graph-based Labeling Rule Augmentation for Weakly Supervised Named Entity Recognition

Xinyan Zhao 29 Dec 26, 2022
TResNet: High Performance GPU-Dedicated Architecture

TResNet: High Performance GPU-Dedicated Architecture paperV2 | pretrained models Official PyTorch Implementation Tal Ridnik, Hussam Lawen, Asaf Noy, I

426 Dec 28, 2022
Implementation of a Transformer that Ponders, using the scheme from the PonderNet paper

Ponder(ing) Transformer Implementation of a Transformer that learns to adapt the number of computational steps it takes depending on the difficulty of

Phil Wang 65 Oct 04, 2022
Robot Hacking Manual (RHM). From robotics to cybersecurity. Papers, notes and writeups from a journey into robot cybersecurity.

RHM: Robot Hacking Manual Download in PDF RHM v0.4 ┃ Read online The Robot Hacking Manual (RHM) is an introductory series about cybersecurity for robo

Víctor Mayoral Vilches 233 Dec 30, 2022
Python project to take sound as input and output as RGB + Brightness values suitable for DMX

sound-to-light Python project to take sound as input and output as RGB + Brightness values suitable for DMX Current goals: Get one pixel working: Vary

Bobby Cox 1 Nov 17, 2021
A deep learning network built with TensorFlow and Keras to classify gender and estimate age.

Convolutional Neural Network (CNN). This repository contains a source code of a deep learning network built with TensorFlow and Keras to classify gend

Pawel Dziemiach 1 Dec 19, 2021
[ICCV' 21] "Unsupervised Point Cloud Pre-training via Occlusion Completion"

OcCo: Unsupervised Point Cloud Pre-training via Occlusion Completion This repository is the official implementation of paper: "Unsupervised Point Clou

Hanchen 204 Dec 24, 2022
Official code for 'Pixel-wise Energy-biased Abstention Learning for Anomaly Segmentationon Complex Urban Driving Scenes'

PEBAL This repo contains the Pytorch implementation of our paper: Pixel-wise Energy-biased Abstention Learning for Anomaly Segmentationon Complex Urba

Yu Tian 115 Dec 29, 2022
Code for "On the Effects of Batch and Weight Normalization in Generative Adversarial Networks"

Note: this repo has been discontinued, please check code for newer version of the paper here Weight Normalized GAN Code for the paper "On the Effects

Sitao Xiang 182 Sep 06, 2021
TensorFlow implementation of AlexNet and its training and testing on ImageNet ILSVRC 2012 dataset

AlexNet training on ImageNet LSVRC 2012 This repository contains an implementation of AlexNet convolutional neural network and its training and testin

Matteo Dunnhofer 161 Nov 25, 2022
Vision Transformer for 3D medical image registration (Pytorch).

ViT-V-Net: Vision Transformer for Volumetric Medical Image Registration keywords: vision transformer, convolutional neural networks, image registratio

Junyu Chen 192 Dec 20, 2022
Crab is a flexible, fast recommender engine for Python that integrates classic information filtering recommendation algorithms in the world of scientific Python packages (numpy, scipy, matplotlib).

Crab - A Recommendation Engine library for Python Crab is a flexible, fast recommender engine for Python that integrates classic information filtering r

python-recsys 1.2k Dec 21, 2022