Keras Realtime Multi-Person Pose Estimation - Keras version of Realtime Multi-Person Pose Estimation project

Overview

This repository has become incompatible with the latest and recommended version of Tensorflow 2.0 Instead of refactoring this code painfully, I created a new fresh repository with some additional features like:

  • Training code for smaller model based on MobilenetV2.

  • Visualisation of predictions (heatmaps, pafs) in Tensorboard.

  • Additional scripts to convert and test models for Tensorflow Lite.

Here is the link to the new repo: tensorflow_Realtime_Multi-Person_Pose_Estimation


Realtime Multi-Person Pose Estimation (DEPRECATED)

This is a keras version of Realtime Multi-Person Pose Estimation project

Introduction

Code repo for reproducing 2017 CVPR paper using keras.

This is a new improved version. The main objective was to remove dependency on separate c++ server which besides the complexity of compiling also contained some bugs... and was very slow. The old version utilizing rmpe_dataset_server is still available under the tag v0.1 if you really would like to take a look.

Results

 

Contents

  1. Converting caffe model
  2. Testing
  3. Training
  4. Changes

Require

  1. Keras
  2. Caffe - docker required if you would like to convert caffe model to keras model. You don't have to compile/install caffe on your local machine.

Converting Caffe model to Keras model

Authors of original implementation released already trained caffe model which you can use to extract weights data.

  • Download caffe model cd model; sh get_caffe_model.sh
  • Dump caffe layers to numpy data cd ..; docker run -v [absolute path to your keras_Realtime_Multi-Person_Pose_Estimation folder]:/workspace -it bvlc/caffe:cpu python dump_caffe_layers.py Note that docker accepts only absolute paths so you have to set the full path to the folder containing this project.
  • Convert caffe model (from numpy data) to keras model python caffe_to_keras.py

Testing steps

  • Convert caffe model to keras model or download already converted keras model https://www.dropbox.com/s/llpxd14is7gyj0z/model.h5
  • Run the notebook demo.ipynb.
  • python demo_image.py --image sample_images/ski.jpg to run the picture demo. Result will be stored in the file result.png. You can use any image file as an input.

Training steps

  • Install gsutil curl https://sdk.cloud.google.com | bash. This is a really helpful tool for downloading large datasets.
  • Download the data set (~25 GB) cd dataset; sh get_dataset.sh,
  • Download COCO official toolbox in dataset/coco/ .
  • cd coco/PythonAPI; sudo python setup.py install to install pycocotools.
  • Go to the "training" folder cd ../../../training.
  • Optionally, you can set the number of processes used to generate samples in parallel dataset.py -> find the line df = PrefetchDataZMQ(df, nr_proc=4)
  • Run the command in terminal python train_pose.py

Changes

25/06/2018

  • Performance improvement thanks to replacing c++ server rmpe_dataset_server with tensorpack dataflow. Tensorpack is a very efficient library for preprocessing and data loading for tensorflow models. Dataflow object behaves like a normal Python iterator but it can generate samples using many processes. This significantly reduces latency when GPU waits for the next sample to be processed.

  • Masks generated on the fly - no need to run separate scripts to generate masks. In fact most of the mask were only positive (nothing to mask out)

  • Masking out the discarded persons who are too close to the main person in the picture, so that the network never sees unlabelled people. Previously we filtered out keypoints of such smaller persons but they were still visible in the picture.

  • Incorrect handling of masks has been fixed. The rmpe_dataset_server sometimes assigned a wrong mask to the image, misleading the network.

26/10/2017

Fixed problem with the training procedure. Here are my results after training for 5 epochs = 25000 iterations (1 epoch is ~5000 batches) The loss values are quite similar as in the original training - output.txt

Results of running demo_image --image sample_images/ski.jpg --model training/weights.best.h5 with model trained only 25000 iterations. Not too bad !!! Training on my single 1070 GPU took around 10 hours.

22/10/2017

Augmented samples are fetched from the server. The network never sees the same image twice which was a problem in previous approach (tool rmpe_dataset_transformer) This allows you to run augmentation locally or on separate node. You can start 2 instances, one serving training set and a second one serving validation set (on different port if locally)

Related repository

Citation

Please cite the paper in your publications if it helps your research:

@InProceedings{cao2017realtime,
  title = {Realtime Multi-Person 2D Pose Estimation using Part Affinity Fields},
  author = {Zhe Cao and Tomas Simon and Shih-En Wei and Yaser Sheikh},
  booktitle = {The IEEE Conference on Computer Vision and Pattern Recognition (CVPR)},
  year = {2017}
  }
Owner
M Faber
Software/Data Engineer
M Faber
Tidy interface to polars

tidypolars tidypolars is a data frame library built on top of the blazingly fast polars library that gives access to methods and functions familiar to

Mark Fairbanks 144 Jan 08, 2023
An open source python library for automated feature engineering

"One of the holy grails of machine learning is to automate more and more of the feature engineering process." ― Pedro Domingos, A Few Useful Things to

alteryx 6.4k Jan 03, 2023
Code for visualizing the loss landscape of neural nets

Visualizing the Loss Landscape of Neural Nets This repository contains the PyTorch code for the paper Hao Li, Zheng Xu, Gavin Taylor, Christoph Studer

Tom Goldstein 2.2k Jan 09, 2023
Unrolled Generative Adversarial Networks

Unrolled Generative Adversarial Networks Luke Metz, Ben Poole, David Pfau, Jascha Sohl-Dickstein arxiv:1611.02163 This repo contains an example notebo

Ben Poole 292 Dec 06, 2022
An open source app to help calm you down when needed.

By: Seanpm2001, Et; Al. Top README.md Read this article in a different language Sorted by: A-Z Sorting options unavailable ( af Afrikaans Afrikaans |

Sean P. Myrick V19.1.7.2 2 Oct 24, 2022
CVAT is free, online, interactive video and image annotation tool for computer vision

Computer Vision Annotation Tool (CVAT) CVAT is free, online, interactive video and image annotation tool for computer vision. It is being used by our

OpenVINO Toolkit 8.6k Jan 04, 2023
Simple-Neural-Network From Scratch in Python

Simple-Neural-Network From Scratch in Python This is a simple Neural Network created without any Machine Learning Libraries. The only dependencies are

Aum Shah 1 Dec 28, 2021
To model the probability of a soccer coach leave his/her team during Campeonato Brasileiro for 10 chosen teams and considering years 2018, 2019 and 2020.

To model the probability of a soccer coach leave his/her team during Campeonato Brasileiro for 10 chosen teams and considering years 2018, 2019 and 2020.

Larissa Sayuri Futino Castro dos Santos 1 Jan 20, 2022
Multiple-Object Tracking with Transformer

TransTrack: Multiple-Object Tracking with Transformer Introduction TransTrack: Multiple-Object Tracking with Transformer Models Training data Training

Peize Sun 537 Jan 04, 2023
Lightweight, Portable, Flexible Distributed/Mobile Deep Learning with Dynamic, Mutation-aware Dataflow Dep Scheduler; for Python, R, Julia, Scala, Go, Javascript and more

Apache MXNet (incubating) for Deep Learning Apache MXNet is a deep learning framework designed for both efficiency and flexibility. It allows you to m

The Apache Software Foundation 20.2k Jan 05, 2023
Weakly Supervised Learning of Rigid 3D Scene Flow

Weakly Supervised Learning of Rigid 3D Scene Flow This repository provides code and data to train and evaluate a weakly supervised method for rigid 3D

Zan Gojcic 124 Dec 27, 2022
Official Implementation of "LUNAR: Unifying Local Outlier Detection Methods via Graph Neural Networks"

LUNAR Official Implementation of "LUNAR: Unifying Local Outlier Detection Methods via Graph Neural Networks" Adam Goodge, Bryan Hooi, Ng See Kiong and

Adam Goodge 25 Dec 28, 2022
2D Human Pose estimation using transformers. Implementation in Pytorch

PE-former: Pose Estimation Transformer Vision transformer architectures perform very well for image classification tasks. Efforts to solve more challe

Panteleris Paschalis 23 Oct 17, 2022
IRON Kaggle project done while doing IRONHACK Bootcamp where we had to analyze and use a Machine Learning Project to predict future sales

IRON Kaggle project done while doing IRONHACK Bootcamp where we had to analyze and use a Machine Learning Project to predict future sales. In this case, we ended up using XGBoost because it was the o

1 Jan 04, 2022
Ranger deep learning optimizer rewrite to use newest components

Ranger21 - integrating the latest deep learning components into a single optimizer Ranger deep learning optimizer rewrite to use newest components Ran

Less Wright 266 Dec 28, 2022
CondNet: Conditional Classifier for Scene Segmentation

CondNet: Conditional Classifier for Scene Segmentation Introduction The fully convolutional network (FCN) has achieved tremendous success in dense vis

ycszen 31 Jul 22, 2022
A modular PyTorch library for optical flow estimation using neural networks

A modular PyTorch library for optical flow estimation using neural networks

neu-vig 113 Dec 20, 2022
Contains a bunch of different python programm tasks

py_tasks Contains a bunch of different python programm tasks Armstrong.py - calculate Armsrong numbers in range from 0 to n with / without cache and c

Dmitry Chmerenko 1 Dec 17, 2021
Scribble-Supervised LiDAR Semantic Segmentation, CVPR 2022 (ORAL)

Scribble-Supervised LiDAR Semantic Segmentation Dataset and code release for the paper Scribble-Supervised LiDAR Semantic Segmentation, CVPR 2022 (ORA

102 Dec 25, 2022
Implements the training, testing and editing tools for "Pluralistic Image Completion"

Pluralistic Image Completion ArXiv | Project Page | Online Demo | Video(demo) This repository implements the training, testing and editing tools for "

Chuanxia Zheng 615 Dec 08, 2022