Complex-Valued Neural Networks (CVNN)Complex-Valued Neural Networks (CVNN)

Overview

Complex-Valued Neural Networks (CVNN)

Done by @NEGU93 - J. Agustin Barrachina

Documentation Status PyPI version Anaconda cvnn version DOI

Using this library, the only difference with a Tensorflow code is that you should use cvnn.layers module instead of tf.keras.layers.

This is a library that uses Tensorflow as a back-end to do complex-valued neural networks as CVNNs are barely supported by Tensorflow and not even supported yet for pytorch (reason why I decided to use Tensorflow for this library). To the authors knowledge, this is the first library that actually works with complex data types instead of real value vectors that are interpreted as real and imaginary part.

Update:

  • Since v1.6 (28 July 2020), pytorch now supports complex vectors and complex gradient as BETA. But still have the same issues that Tensorflow has, so no reason to migrate yet.
  • Since v0.2 (25 Jan 2021) complexPyTorch uses complex64 dtype.

Documentation

Please Read the Docs

Instalation Guide:

Using Anaconda

conda install -c negu93 cvnn

Using PIP

Vanilla Version installs all the minimum dependencies.

pip install cvnn

Plot capabilities has the posibility to plot the results obtained with the training with several plot libraries.

pip install cvnn[plotter]

Full Version installs full version with all features

pip install cvnn[full]

Short example

From "outside" everything is the same as when using Tensorflow.

import numpy as np
import tensorflow as tf

# Assume you already have complex data... example numpy arrays of dtype np.complex64
(train_images, train_labels), (test_images, test_labels) = get_dataset()        # to be done by each user

model = get_model()   # Get your model

# Compile as any TensorFlow model
model.compile(optimizer='adam', metrics=['accuracy'],
              loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True))
model.summary()

# Train and evaluate
history = model.fit(train_images, train_labels, epochs=epochs, validation_data=(test_images, test_labels))
test_loss, test_acc = model.evaluate(test_images,  test_labels, verbose=2)

The main difference is that you will be using cvnn layers instead of Tensorflow layers. There are some options on how to do it as shown here:

Sequential API

import cvnn.layers as complex_layers

def get_model():
    model = tf.keras.models.Sequential()
    model.add(complex_layers.ComplexInput(input_shape=(32, 32, 3)))                     # Always use ComplexInput at the start
    model.add(complex_layers.ComplexConv2D(32, (3, 3), activation='cart_relu'))
    model.add(complex_layers.ComplexAvgPooling2D((2, 2)))
    model.add(complex_layers.ComplexConv2D(64, (3, 3), activation='cart_relu'))
    model.add(complex_layers.ComplexMaxPooling2D((2, 2)))
    model.add(complex_layers.ComplexConv2D(64, (3, 3), activation='cart_relu'))
    model.add(complex_layers.ComplexFlatten())
    model.add(complex_layers.ComplexDense(64, activation='cart_relu'))
    model.add(complex_layers.ComplexDense(10, activation='convert_to_real_with_abs'))   
    # An activation that casts to real must be used at the last layer. 
    # The loss function cannot minimize a complex number
    return model

Functional API

import cvnn.layers as complex_layers
def get_model():
    inputs = complex_layers.complex_input(shape=(128, 128, 3))
    c0 = complex_layers.ComplexConv2D(32, activation='cart_relu', kernel_size=3)(inputs)
    c1 = complex_layers.ComplexConv2D(32, activation='cart_relu', kernel_size=3)(c0)
    c2 = complex_layers.ComplexMaxPooling2D(pool_size=(2, 2), strides=(2, 2), padding='valid')(c1)
    t01 = complex_layers.ComplexConv2DTranspose(5, kernel_size=2, strides=(2, 2), activation='cart_relu')(c2)
    concat01 = tf.keras.layers.concatenate([t01, c1], axis=-1)

    c3 = complex_layers.ComplexConv2D(4, activation='cart_relu', kernel_size=3)(concat01)
    out = complex_layers.ComplexConv2D(4, activation='cart_relu', kernel_size=3)(c3)
    return tf.keras.Model(inputs, out)

About me & Motivation

My personal website

I am a PhD student from Ecole CentraleSupelec with a scholarship from ONERA and the DGA

I am basically working with Complex-Valued Neural Networks for my PhD topic. In the need of making my coding more dynamic I build a library not to have to repeat the same code over and over for little changes and accelerate therefore my coding.

Cite Me

Alway prefer the Zenodo citation.

Next you have a model but beware to change the version and date accordingly.

@software{j_agustin_barrachina_2021_4452131,
  author       = {J Agustin Barrachina},
  title        = {Complex-Valued Neural Networks (CVNN)},
  month        = jan,
  year         = 2021,
  publisher    = {Zenodo},
  version      = {v1.0.3},
  doi          = {10.5281/zenodo.4452131},
  url          = {https://doi.org/10.5281/zenodo.4452131}
}

Issues

For any issues please report them in here

This library is tested using pytest.

pytest logo

Owner
youceF
youceF
Implementation of "Meta-rPPG: Remote Heart Rate Estimation Using a Transductive Meta-Learner"

Meta-rPPG: Remote Heart Rate Estimation Using a Transductive Meta-Learner This repository is the official implementation of Meta-rPPG: Remote Heart Ra

Eugene Lee 137 Dec 13, 2022
A Keras implementation of YOLOv4 (Tensorflow backend)

keras-yolo4 请使用更完善的版本: https://github.com/miemie2013/Keras-YOLOv4 Please visit here for more complete model: https://github.com/miemie2013/Keras-YOLOv

384 Nov 29, 2022
PyTorch implementation of Trust Region Policy Optimization

PyTorch implementation of TRPO Try my implementation of PPO (aka newer better variant of TRPO), unless you need to you TRPO for some specific reasons.

Ilya Kostrikov 366 Nov 15, 2022
AAAI-22 paper: SimSR: Simple Distance-based State Representationfor Deep Reinforcement Learning

SimSR Code and dataset for the paper SimSR: Simple Distance-based State Representationfor Deep Reinforcement Learning (AAAI-22). Requirements We assum

7 Dec 19, 2022
A fuzzing framework for SMT solvers

yinyang A fuzzing framework for SMT solvers. Given a set of seed SMT formulas, yinyang generates mutant formulas to stress-test SMT solvers. yinyang c

Project Yin-Yang for SMT Solver Testing 145 Jan 04, 2023
Unifying Global-Local Representations in Salient Object Detection with Transformer

GLSTR (Global-Local Saliency Transformer) This is the official implementation of paper "Unifying Global-Local Representations in Salient Object Detect

11 Aug 24, 2022
OpenCVのGrabCut()を利用したセマンティックセグメンテーション向けアノテーションツール(Annotation tool using GrabCut() of OpenCV. It can be used to create datasets for semantic segmentation.)

[Japanese/English] GrabCut-Annotation-Tool GrabCut-Annotation-Tool.mp4 OpenCVのGrabCut()を利用したアノテーションツールです。 セマンティックセグメンテーション向けのデータセット作成にご使用いただけます。 ※Grab

KazuhitoTakahashi 30 Nov 18, 2022
an implementation of 3D Ken Burns Effect from a Single Image using PyTorch

3d-ken-burns This is a reference implementation of 3D Ken Burns Effect from a Single Image [1] using PyTorch. Given a single input image, it animates

Simon Niklaus 1.4k Dec 28, 2022
The description of FMFCC-A (audio track of FMFCC) dataset and Challenge resluts.

FMFCC-A This project is the description of FMFCC-A (audio track of FMFCC) dataset and Challenge resluts. The FMFCC-A dataset is shared through BaiduCl

18 Dec 24, 2022
CLEAR algorithm for multi-view data association

CLEAR: Consistent Lifting, Embedding, and Alignment Rectification Algorithm The Matlab, Python, and C++ implementation of the CLEAR algorithm, as desc

MIT Aerospace Controls Laboratory 30 Jan 02, 2023
Pytorch library for seismic data augmentation

Pytorch library for seismic data augmentation

Artemii Novoselov 27 Nov 22, 2022
Official implementation for "Image Quality Assessment using Contrastive Learning"

Image Quality Assessment using Contrastive Learning Pavan C. Madhusudana, Neil Birkbeck, Yilin Wang, Balu Adsumilli and Alan C. Bovik This is the offi

Pavan Chennagiri 67 Dec 30, 2022
[ICCV'21] NEAT: Neural Attention Fields for End-to-End Autonomous Driving

NEAT: Neural Attention Fields for End-to-End Autonomous Driving Paper | Supplementary | Video | Poster | Blog This repository is for the ICCV 2021 pap

254 Jan 02, 2023
Clustering is a popular approach to detect patterns in unlabeled data

Visual Clustering Clustering is a popular approach to detect patterns in unlabeled data. Existing clustering methods typically treat samples in a data

Tarek Naous 24 Nov 11, 2022
The BCNet related data and inference model.

BCNet This repository includes the some source code and related dataset of paper BCNet: Learning Body and Cloth Shape from A Single Image, ECCV 2020,

81 Dec 12, 2022
Tracking Progress in Question Answering over Knowledge Graphs

Tracking Progress in Question Answering over Knowledge Graphs Table of contents Question Answering Systems with Descriptions The QA Systems Table cont

Knowledge Graph Question Answering 47 Jan 02, 2023
NeRD: Neural Reflectance Decomposition from Image Collections

NeRD: Neural Reflectance Decomposition from Image Collections Project Page | Video | Paper | Dataset Implementation for NeRD. A novel method which dec

Computergraphics (University of Tübingen) 195 Dec 29, 2022
PyTorch implementation of the paper Dynamic Token Normalization Improves Vision Transfromers.

Dynamic Token Normalization Improves Vision Transformers This is the PyTorch implementation of the paper Dynamic Token Normalization Improves Vision T

Wenqi Shao 20 Oct 09, 2022
Probabilistic Tensor Decomposition of Neural Population Spiking Activity

Probabilistic Tensor Decomposition of Neural Population Spiking Activity Matlab (recommended) and Python (in developement) implementations of Soulat e

Hugo Soulat 6 Nov 30, 2022
Segmentation Training Pipeline

Segmentation Training Pipeline This package is a part of Musket ML framework. Reasons to use Segmentation Pipeline Segmentation Pipeline was developed

Musket ML 52 Dec 12, 2022