Complex-Valued Neural Networks (CVNN)Complex-Valued Neural Networks (CVNN)

Overview

Complex-Valued Neural Networks (CVNN)

Done by @NEGU93 - J. Agustin Barrachina

Documentation Status PyPI version Anaconda cvnn version DOI

Using this library, the only difference with a Tensorflow code is that you should use cvnn.layers module instead of tf.keras.layers.

This is a library that uses Tensorflow as a back-end to do complex-valued neural networks as CVNNs are barely supported by Tensorflow and not even supported yet for pytorch (reason why I decided to use Tensorflow for this library). To the authors knowledge, this is the first library that actually works with complex data types instead of real value vectors that are interpreted as real and imaginary part.

Update:

  • Since v1.6 (28 July 2020), pytorch now supports complex vectors and complex gradient as BETA. But still have the same issues that Tensorflow has, so no reason to migrate yet.
  • Since v0.2 (25 Jan 2021) complexPyTorch uses complex64 dtype.

Documentation

Please Read the Docs

Instalation Guide:

Using Anaconda

conda install -c negu93 cvnn

Using PIP

Vanilla Version installs all the minimum dependencies.

pip install cvnn

Plot capabilities has the posibility to plot the results obtained with the training with several plot libraries.

pip install cvnn[plotter]

Full Version installs full version with all features

pip install cvnn[full]

Short example

From "outside" everything is the same as when using Tensorflow.

import numpy as np
import tensorflow as tf

# Assume you already have complex data... example numpy arrays of dtype np.complex64
(train_images, train_labels), (test_images, test_labels) = get_dataset()        # to be done by each user

model = get_model()   # Get your model

# Compile as any TensorFlow model
model.compile(optimizer='adam', metrics=['accuracy'],
              loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True))
model.summary()

# Train and evaluate
history = model.fit(train_images, train_labels, epochs=epochs, validation_data=(test_images, test_labels))
test_loss, test_acc = model.evaluate(test_images,  test_labels, verbose=2)

The main difference is that you will be using cvnn layers instead of Tensorflow layers. There are some options on how to do it as shown here:

Sequential API

import cvnn.layers as complex_layers

def get_model():
    model = tf.keras.models.Sequential()
    model.add(complex_layers.ComplexInput(input_shape=(32, 32, 3)))                     # Always use ComplexInput at the start
    model.add(complex_layers.ComplexConv2D(32, (3, 3), activation='cart_relu'))
    model.add(complex_layers.ComplexAvgPooling2D((2, 2)))
    model.add(complex_layers.ComplexConv2D(64, (3, 3), activation='cart_relu'))
    model.add(complex_layers.ComplexMaxPooling2D((2, 2)))
    model.add(complex_layers.ComplexConv2D(64, (3, 3), activation='cart_relu'))
    model.add(complex_layers.ComplexFlatten())
    model.add(complex_layers.ComplexDense(64, activation='cart_relu'))
    model.add(complex_layers.ComplexDense(10, activation='convert_to_real_with_abs'))   
    # An activation that casts to real must be used at the last layer. 
    # The loss function cannot minimize a complex number
    return model

Functional API

import cvnn.layers as complex_layers
def get_model():
    inputs = complex_layers.complex_input(shape=(128, 128, 3))
    c0 = complex_layers.ComplexConv2D(32, activation='cart_relu', kernel_size=3)(inputs)
    c1 = complex_layers.ComplexConv2D(32, activation='cart_relu', kernel_size=3)(c0)
    c2 = complex_layers.ComplexMaxPooling2D(pool_size=(2, 2), strides=(2, 2), padding='valid')(c1)
    t01 = complex_layers.ComplexConv2DTranspose(5, kernel_size=2, strides=(2, 2), activation='cart_relu')(c2)
    concat01 = tf.keras.layers.concatenate([t01, c1], axis=-1)

    c3 = complex_layers.ComplexConv2D(4, activation='cart_relu', kernel_size=3)(concat01)
    out = complex_layers.ComplexConv2D(4, activation='cart_relu', kernel_size=3)(c3)
    return tf.keras.Model(inputs, out)

About me & Motivation

My personal website

I am a PhD student from Ecole CentraleSupelec with a scholarship from ONERA and the DGA

I am basically working with Complex-Valued Neural Networks for my PhD topic. In the need of making my coding more dynamic I build a library not to have to repeat the same code over and over for little changes and accelerate therefore my coding.

Cite Me

Alway prefer the Zenodo citation.

Next you have a model but beware to change the version and date accordingly.

@software{j_agustin_barrachina_2021_4452131,
  author       = {J Agustin Barrachina},
  title        = {Complex-Valued Neural Networks (CVNN)},
  month        = jan,
  year         = 2021,
  publisher    = {Zenodo},
  version      = {v1.0.3},
  doi          = {10.5281/zenodo.4452131},
  url          = {https://doi.org/10.5281/zenodo.4452131}
}

Issues

For any issues please report them in here

This library is tested using pytest.

pytest logo

Owner
youceF
youceF
Lightwood is Legos for Machine Learning.

Lightwood is like Legos for Machine Learning. A Pytorch based framework that breaks down machine learning problems into smaller blocks that can be glu

MindsDB Inc 312 Jan 08, 2023
EmoTag helps you train emotion detection model for Chinese audios

emoTag emoTag helps you train emotion detection model for Chinese audios. Environment pip install -r requirement.txt Data We used Emotional Speech Dat

_zza 4 Sep 07, 2022
A implemetation of the LRCN in mxnet

A implemetation of the LRCN in mxnet ##Abstract LRCN is a combination of CNN and RNN ##Installation Download UCF101 dataset ./avi2jpg.sh to split the

44 Aug 25, 2022
PyTorch Implementation of our paper Explain Me the Painting: Multi-Topic Knowledgeable Art Description Generation

PyTorch Implementation of our paper Explain Me the Painting: Multi-Topic Knowledgeable Art Description Generation

Zechen Bai 12 Jul 08, 2022
TopFormer: Token Pyramid Transformer for Mobile Semantic Segmentation, CVPR2022

TopFormer: Token Pyramid Transformer for Mobile Semantic Segmentation Paper Links: TopFormer: Token Pyramid Transformer for Mobile Semantic Segmentati

Hust Visual Learning Team 253 Dec 21, 2022
Privacy-Preserving Portrait Matting [ACM MM-21]

Privacy-Preserving Portrait Matting [ACM MM-21] This is the official repository of the paper Privacy-Preserving Portrait Matting. Jizhizi Li∗, Sihan M

Jizhizi_Li 212 Dec 27, 2022
LSTC: Boosting Atomic Action Detection with Long-Short-Term Context

LSTC: Boosting Atomic Action Detection with Long-Short-Term Context This Repository contains the code on AVA of our ACM MM 2021 paper: LSTC: Boosting

Tencent YouTu Research 9 Oct 11, 2022
Rethinking Transformer-based Set Prediction for Object Detection

Rethinking Transformer-based Set Prediction for Object Detection Here are the code for the ICCV paper. The code is adapted from Detectron2 and AdelaiD

Zhiqing Sun 62 Dec 03, 2022
DIT is a DTLS MitM proxy implemented in Python 3. It can intercept, manipulate and suppress datagrams between two DTLS endpoints and supports psk-based and certificate-based authentication schemes (RSA + ECC).

DIT - DTLS Interception Tool DIT is a MitM proxy tool to intercept DTLS traffic. It can intercept, manipulate and/or suppress DTLS datagrams between t

52 Nov 30, 2022
ML powered analytics engine for outlier detection and root cause analysis.

Website • Docs • Blog • LinkedIn • Community Slack ML powered analytics engine for outlier detection and root cause analysis ✨ What is Chaos Genius? C

Chaos Genius 523 Jan 04, 2023
This is a collection of simple PyTorch implementations of neural networks and related algorithms. These implementations are documented with explanations,

labml.ai Deep Learning Paper Implementations This is a collection of simple PyTorch implementations of neural networks and related algorithms. These i

labml.ai 16.4k Jan 09, 2023
[Link]deep_portfolo - Use Reforcemet earg ad Supervsed learg to Optmze portfolo allocato []

rl_portfolio This Repository uses Reinforcement Learning and Supervised learning to Optimize portfolio allocation. The goal is to make profitable agen

Deepender Singla 165 Dec 02, 2022
This repository contains the code for TACL2021 paper: SummaC: Re-Visiting NLI-based Models for Inconsistency Detection in Summarization

SummaC: Summary Consistency Detection This repository contains the code for TACL2021 paper: SummaC: Re-Visiting NLI-based Models for Inconsistency Det

Philippe Laban 24 Jan 03, 2023
A pure PyTorch implementation of the loss described in "Online Segment to Segment Neural Transduction"

ssnt-loss ℹ️ This is a WIP project. the implementation is still being tested. A pure PyTorch implementation of the loss described in "Online Segment t

張致強 1 Feb 09, 2022
A pyparsing-based library for parsing SOQL statements

CONTRIBUTORS WANTED!! Installation pip install python-soql-parser or, with poetry poetry add python-soql-parser Usage from python_soql_parser import p

Kicksaw 0 Jun 07, 2022
an implementation of 3D Ken Burns Effect from a Single Image using PyTorch

3d-ken-burns This is a reference implementation of 3D Ken Burns Effect from a Single Image [1] using PyTorch. Given a single input image, it animates

Simon Niklaus 1.4k Dec 28, 2022
The official implementation of the CVPR 2021 paper FAPIS: a Few-shot Anchor-free Part-based Instance Segmenter

FAPIS The official implementation of the CVPR 2021 paper FAPIS: a Few-shot Anchor-free Part-based Instance Segmenter Introduction This repo is primari

Khoi Nguyen 8 Dec 11, 2022
Code, final versions, and information on the Sparkfun Graphical Datasheets

Graphical Datasheets Code, final versions, and information on the SparkFun Graphical Datasheets. Generated Cells After Running Script Example Complete

SparkFun Electronics 102 Jan 05, 2023
Standalone pre-training recipe with JAX+Flax

Sabertooth Sabertooth is standalone pre-training recipe based on JAX+Flax, with data pipelines implemented in Rust. It runs on CPU, GPU, and/or TPU, b

Nikita Kitaev 26 Nov 28, 2022