Automatic library of congress classification, using word embeddings from book titles and synopses.

Overview

Automatic Library of Congress Classification

The Library of Congress Classification (LCC) is a comprehensive classification system that was first developed in the late nineteenth and early twentieth centuries to organize and arrange the book collections of the Library of Congress. The vast complexity of this system has made manual book classification for it quite challenging and time-consuming. This is what has motivated research in automating this process, as can be seen in Larson RR (1992), Frank and Paynter (2004), and Ávila-Argüelles et al. (2010).

In this work we propose the usage of word embeddings, made possible by recent advances in NLP, to take advantage of the fairly rich semantic information that they provide. Usage of word embeddings allows us to effectively use the information in the synposis of the books which contains a great deal of information about the record. We hypothesize that the usage of word embeddings and incorporating synopses would yield better performance over the classifcation task, while also freeing us from relying on Library of Congress Subject Headings (LCSH), which are expensive annotations that previous work has used.

To test out our hypotheses we designed Naive Bayes classifiers, Support Vector Machines, Multi-Layer Perceptrons, and LSTMs to predict 15 of 21 Library of Congress classes. The LSTM model with large BERT embeddings outperformed all other models and was able to classify documents with 76% accuracy when trained on a document’s title and synopsis. This is competitive with previous models that classified documents using their Library of Congress Subject Headings.

For a more detailed explanation of our work, please see our project report.


Dependencies

To run our code, you need the following packages:

scikit-learn=1.0.1
pytorch=1.10.0
python=3.9.7
numpy=1.21.4
notebook=6.4.6
matplotlib=3.5.0
gensim=4.1.2
tqdm=4.62.3
transformers=4.13.0
nltk=3.6.5
pandas=1.3.4
seaborn=0.11.2

Checklist

  1. Install the python packages listed above with requirements.txt
$ pip install -r requirements.txt

or any other package manager you would like.

  1. Set PYTHONPATH to the root of this folder by running the command below at the root directory of the project.
$ export PYTHONPATH=$(PWD)
  1. Download the data needed from this link and put it in the project root folder. Make sure the folder is called github_data.

For the features (tf_idf, w2v, and BERT), you can also use the runner python scripts in "runner" folder to create features.

Use the command below to build all the features. The whole features preparation steps take around 2.5 hours.

$ python runner/build_all_features.py

Due to its large memory consumption, the process might crash along the way. If that's the case, please try again by running the same command. The script is able to pick up on where it left of.

Build each feature separately

BERT embeddings

$ python runner/build_bert_embeddings.py --model_size=small  

W2V embeddings

For this one, you will need to run the generate_w2v_embedddings.ipynb notebook.

tf-idf features

$ python runner/build_tfidf_features.py

If the download still fails, then please download the data directly from our Google Drive [Link] (BERT small and large unavailable).

Running the training code for non-sequential model

Starting point
The main notebook for running all the models is in this notebook [Link].
Note that the training process required preprocessed embeddings data which lies in "github_data" folder.

Caching
Note that once each model finishes fitting to the data, the code also stored the result model as a pickle file in the "_cache" folder.

Training code for sequential model

These notebooks for LSTM on BERT and word2vec ware all located in the report/nnn folder. (e.g., [Link].

The rnn codes (LSTM, GRU) can also be found in iml_group_proj/model/bert_[lstm|gpu].py

Contributors (in no specific order)

  • Katie Warburton - Researched previous automatic LCC attempts and found the dataset. Wrote the introduction and helped to write the discussion. Researched and understood the MARC 21 bibliographic standard to parse through the dataset and extract documents with an LCC, title, and synopsis. Balanced the dataset and split it into a train and test set. Described data balancing and the dataset in the report. - katie-warburton

  • Yujie Chen - Trained and assessed the performance of SVM models and reported the SVM and general model development approaches and relevant results. - Yujie-C

  • Teerapat Chaiwachirasak - Wrote the code for generating tf-idf features and BERT embeddings. Trained Naive Bayes and MLP on tf-idf features and BERT embeddings. Wrote training pipelines that take ML models from the whole team and train them together in one same workflow with multiple data settings (title only, synopsis only, and title + synopsis) to get a summarized and unified result. Trained LSTM models on BERT embeddings on (Google Collab). - Teerapat12

  • Ahmad Pourihosseini - Wrote the code for generating word2vec embeddings and its corresponding preprocessing and the code for MLP and LSTM models on these embeddings. Came up with and implemented the idea of visualizing the averaged embeddings. Wrote the parts of the report corresponding to these sections. - ahmad-PH

Owner
Ahmad Pourihosseini
Ahmad Pourihosseini
EDPN: Enhanced Deep Pyramid Network for Blurry Image Restoration

EDPN: Enhanced Deep Pyramid Network for Blurry Image Restoration Ruikang Xu, Zeyu Xiao, Jie Huang, Yueyi Zhang, Zhiwei Xiong. EDPN: Enhanced Deep Pyra

69 Dec 15, 2022
Jittor is a high-performance deep learning framework based on JIT compiling and meta-operators.

Jittor: a Just-in-time(JIT) deep learning framework Quickstart | Install | Tutorial | Chinese Jittor is a high-performance deep learning framework bas

2.7k Jan 03, 2023
The PyTorch improved version of TPAMI 2017 paper: Face Alignment in Full Pose Range: A 3D Total Solution.

Face Alignment in Full Pose Range: A 3D Total Solution By Jianzhu Guo. [Updates] 2020.8.30: The pre-trained model and code of ECCV-20 are made public

Jianzhu Guo 3.4k Jan 02, 2023
Adversarial Learning for Semi-supervised Semantic Segmentation, BMVC 2018

Adversarial Learning for Semi-supervised Semantic Segmentation This repo is the pytorch implementation of the following paper: Adversarial Learning fo

Wayne Hung 464 Dec 19, 2022
The implementation of the lifelong infinite mixture model

Lifelong infinite mixture model 📋 This is the implementation of the Lifelong infinite mixture model 📋 Accepted by ICCV 2021 Title : Lifelong Infinit

Fei Ye 5 Oct 20, 2022
[ICCV 2021] Encoder-decoder with Multi-level Attention for 3D Human Shape and Pose Estimation

MAED: Encoder-decoder with Multi-level Attention for 3D Human Shape and Pose Estimation Getting Started Our codes are implemented and tested with pyth

ZiNiU WaN 176 Dec 15, 2022
Emulation and Feedback Fuzzing of Firmware with Memory Sanitization

BaseSAFE This repository contains the BaseSAFE Rust APIs, introduced by "BaseSAFE: Baseband SAnitized Fuzzing through Emulation". The example/ directo

Security in Telecommunications 138 Dec 16, 2022
A Python library for working with arbitrary-dimension hypercomplex numbers following the Cayley-Dickson construction of algebras.

Hypercomplex A Python library for working with quaternions, octonions, sedenions, and beyond following the Cayley-Dickson construction of hypercomplex

7 Nov 04, 2022
TensorFlow implementation of Barlow Twins (Barlow Twins: Self-Supervised Learning via Redundancy Reduction)

Barlow-Twins-TF This repository implements Barlow Twins (Barlow Twins: Self-Supervised Learning via Redundancy Reduction) in TensorFlow and demonstrat

Sayak Paul 36 Sep 14, 2022
The object detection pipeline is based on Ultralytics YOLOv5

AYOLOv2 The main goal of this repository is to rewrite the object detection pipeline with a better code structure for better portability and adaptabil

153 Dec 22, 2022
Lab course materials for IEMBA 8/9 course "Coding and Artificial Intelligence"

IEMBA 8/9 - Coding and Artificial Intelligence Dear IEMBA 8/9 students, welcome to our IEMBA 8/9 elective course Coding and Artificial Intelligence, t

Artificial Intelligence & Machine Learning (AI:ML Lab) @ HSG 1 Jan 11, 2022
Toolbox of models, callbacks, and datasets for AI/ML researchers.

Pretrained SOTA Deep Learning models, callbacks and more for research and production with PyTorch Lightning and PyTorch Website • Installation • Main

Pytorch Lightning 1.4k Dec 30, 2022
Implementation of Perceiver, General Perception with Iterative Attention, in Pytorch

Perceiver - Pytorch Implementation of Perceiver, General Perception with Iterative Attention, in Pytorch Install $ pip install perceiver-pytorch Usage

Phil Wang 876 Dec 29, 2022
FairyTailor: Multimodal Generative Framework for Storytelling

FairyTailor: Multimodal Generative Framework for Storytelling

Eden Bens 172 Dec 30, 2022
Code for "AutoMTL: A Programming Framework for Automated Multi-Task Learning"

AutoMTL: A Programming Framework for Automated Multi-Task Learning This is the website for our paper "AutoMTL: A Programming Framework for Automated M

Ivy Zhang 40 Dec 04, 2022
Distributional Sliced-Wasserstein distance code

Distributional Sliced Wasserstein distance This is a pytorch implementation of the paper "Distributional Sliced-Wasserstein and Applications to Genera

VinAI Research 39 Jan 01, 2023
GANmouflage: 3D Object Nondetection with Texture Fields

GANmouflage: 3D Object Nondetection with Texture Fields Rui Guo1 Jasmine Collins

29 Aug 10, 2022
Code for "Training Neural Networks with Fixed Sparse Masks" (NeurIPS 2021).

Fisher Induced Sparse uncHanging (FISH) Mask This repo contains the code for Fisher Induced Sparse uncHanging (FISH) Mask training, from "Training Neu

Varun Nair 37 Dec 30, 2022
Using deep learning to predict gene structures of the coding genes in DNA sequences of Arabidopsis thaliana

DeepGeneAnnotator: A tool to annotate the gene in the genome The master thesis of the "Using deep learning to predict gene structures of the coding ge

Ching-Tien Wang 3 Sep 09, 2022
Code for our method RePRI for Few-Shot Segmentation. Paper at http://arxiv.org/abs/2012.06166

Region Proportion Regularized Inference (RePRI) for Few-Shot Segmentation In this repo, we provide the code for our paper : "Few-Shot Segmentation Wit

Malik Boudiaf 138 Dec 12, 2022