[NeurIPS 2021] Shape from Blur: Recovering Textured 3D Shape and Motion of Fast Moving Objects

Overview

[NeurIPS 2021] Shape from Blur: Recovering Textured 3D Shape and Motion of Fast Moving Objects

YouTube | arXiv

                 

Prerequisites

Kaolin is available here: https://github.com/NVIDIAGameWorks/kaolin

Running

Examples

The code can be easily run by:

python optimize.py

Running with your inputs:

python optimize.py --im examples/vol_im.png --bgr examples/vol_bgr.png
python optimize.py --im examples/aerobie_im.png --bgr examples/aerobie_bgr.png
python optimize.py --im examples/pen_im.png --bgr examples/pen_bgr.png

The results will be written to the output folder.

Reference

Examples If you use this repository, please cite the following publication:

@misc{sfb,
  title = {Shape from Blur: Recovering Textured 3D Shape and Motion of Fast Moving Objects},
  author = {Denys Rozumnyi and Martin R. Oswald and Vittorio Ferrari and Marc Pollefeys},
  booktitle = {NeurIPS},
  month = {Dec},
  year = {2021}
}
You might also like...
Pop-Out Motion: 3D-Aware Image Deformation via Learning the Shape Laplacian (CVPR 2022)
Pop-Out Motion: 3D-Aware Image Deformation via Learning the Shape Laplacian (CVPR 2022)

Pop-Out Motion Pop-Out Motion: 3D-Aware Image Deformation via Learning the Shape Laplacian (CVPR 2022) Jihyun Lee*, Minhyuk Sung*, Hyunjin Kim, Tae-Ky

Code for Discriminative Sounding Objects Localization (NeurIPS 2020)
Code for Discriminative Sounding Objects Localization (NeurIPS 2020)

Discriminative Sounding Objects Localization Code for our NeurIPS 2020 paper Discriminative Sounding Objects Localization via Self-supervised Audiovis

A hand tracking demo made with mediapipe where you can control lights with pinching your fingers and moving your hand up/down.

HandTrackingBrightnessControl A hand tracking demo made with mediapipe where you can control lights with pinching your fingers and moving your hand up

Deep Implicit Moving Least-Squares Functions for 3D Reconstruction
Deep Implicit Moving Least-Squares Functions for 3D Reconstruction

DeepMLS: Deep Implicit Moving Least-Squares Functions for 3D Reconstruction This repository contains the implementation of the paper: Deep Implicit Mo

MonoRec: Semi-Supervised Dense Reconstruction in Dynamic Environments from a Single Moving Camera
MonoRec: Semi-Supervised Dense Reconstruction in Dynamic Environments from a Single Moving Camera

MonoRec: Semi-Supervised Dense Reconstruction in Dynamic Environments from a Single Moving Camera

Moving Object Segmentation in 3D LiDAR Data: A Learning-based Approach Exploiting Sequential Data
Moving Object Segmentation in 3D LiDAR Data: A Learning-based Approach Exploiting Sequential Data

LiDAR-MOS: Moving Object Segmentation in 3D LiDAR Data This repo contains the code for our paper: Moving Object Segmentation in 3D LiDAR Data: A Learn

Simulation of moving particles under microscopic imaging

Simulation of moving particles under microscopic imaging Install scipy numpy scikit-image tiffile Run python simulation.py Read result https://imagej

High-performance moving least squares material point method (MLS-MPM) solver.
High-performance moving least squares material point method (MLS-MPM) solver.

High-Performance MLS-MPM Solver with Cutting and Coupling (CPIC) (MIT License) A Moving Least Squares Material Point Method with Displacement Disconti

Predict multi paths to a moving person depending on his trajectory history.
Predict multi paths to a moving person depending on his trajectory history.

Multi-future Trajectory Prediction The project is about using the Multiverse model to make possible multible-future trajectory prediction for a seen p

Comments
  • cannot import name 'total_variation' from 'kornia'

    cannot import name 'total_variation' from 'kornia'

    hi!

    what an interesting work!

    I have some trouble running the test demo. I have downloaded the newest kornia from pip and tried this https://github.com/kornia/kornia/discussions/1290, but still, get the problem. I wonder if you could give your environment requirements to run the test.

    thx :)

    Traceback (most recent call last):
      File "optimize.py", line 7, in <module>
        from shapefromblur import *
      File "/dev-data/xxx/projects/SfB/ShapeFromBlur-main/shapefromblur.py", line 12, in <module>
        from models.loss import *
      File "/dev-data/xxx/projects/SfB/ShapeFromBlur-main/models/loss.py", line 3, in <module>
        from kornia import total_variation
    ImportError: cannot import name 'total_variation' from 'kornia'
    
    opened by Ayxm1412 2
Releases(v1.0)
Owner
Denys Rozumnyi
PhD student at ETH Zurich.
Denys Rozumnyi
Unofficial implementation of Alias-Free Generative Adversarial Networks. (https://arxiv.org/abs/2106.12423) in PyTorch

alias-free-gan-pytorch Unofficial implementation of Alias-Free Generative Adversarial Networks. (https://arxiv.org/abs/2106.12423) This implementation

Kim Seonghyeon 502 Jan 03, 2023
LeafSnap replicated using deep neural networks to test accuracy compared to traditional computer vision methods.

Deep-Leafsnap Convolutional Neural Networks have become largely popular in image tasks such as image classification recently largely due to to Krizhev

Sujith Vishwajith 48 Nov 27, 2022
Food Drinks and groceries Images Multi Lingual (FooDI-ML) dataset.

Food Drinks and groceries Images Multi Lingual (FooDI-ML) dataset.

41 Jan 04, 2023
PyTorch code for the "Deep Neural Networks with Box Convolutions" paper

Box Convolution Layer for ConvNets Single-box-conv network (from `examples/mnist.py`) learns patterns on MNIST What This Is This is a PyTorch implemen

Egor Burkov 515 Dec 18, 2022
Part-aware Measurement for Robust Multi-View Multi-Human 3D Pose Estimation and Tracking

Part-aware Measurement for Robust Multi-View Multi-Human 3D Pose Estimation and Tracking Part-Aware Measurement for Robust Multi-View Multi-Human 3D P

19 Oct 27, 2022
Author Disambiguation using Knowledge Graph Embeddings with Literals

Author Name Disambiguation with Knowledge Graph Embeddings using Literals This is the repository for the master thesis project on Knowledge Graph Embe

12 Oct 19, 2022
Self-Supervised Image Denoising via Iterative Data Refinement

Self-Supervised Image Denoising via Iterative Data Refinement Yi Zhang1, Dasong Li1, Ka Lung Law2, Xiaogang Wang1, Hongwei Qin2, Hongsheng Li1 1CUHK-S

Zhang Yi 72 Jan 01, 2023
A simple and useful implementation of LPIPS.

lpips-pytorch Description Developing perceptual distance metrics is a major topic in recent image processing problems. LPIPS[1] is a state-of-the-art

So Uchida 121 Dec 24, 2022
​TextWorld is a sandbox learning environment for the training and evaluation of reinforcement learning (RL) agents on text-based games.

TextWorld A text-based game generator and extensible sandbox learning environment for training and testing reinforcement learning (RL) agents. Also ch

Microsoft 983 Dec 23, 2022
(ICCV 2021) ProHMR - Probabilistic Modeling for Human Mesh Recovery

ProHMR - Probabilistic Modeling for Human Mesh Recovery Code repository for the paper: Probabilistic Modeling for Human Mesh Recovery Nikos Kolotouros

Nikos Kolotouros 209 Dec 13, 2022
Code for Paper "Evidential Softmax for Sparse MultimodalDistributions in Deep Generative Models"

Evidential Softmax for Sparse Multimodal Distributions in Deep Generative Models Abstract Many applications of generative models rely on the marginali

Stanford Intelligent Systems Laboratory 9 Jun 06, 2022
The official implementation of EIGNN: Efficient Infinite-Depth Graph Neural Networks (NeurIPS 2021)

EIGNN: Efficient Infinite-Depth Graph Neural Networks The official implementation of EIGNN: Efficient Infinite-Depth Graph Neural Networks (NeurIPS 20

Juncheng Liu 14 Nov 22, 2022
E-RAFT: Dense Optical Flow from Event Cameras

E-RAFT: Dense Optical Flow from Event Cameras This is the code for the paper E-RAFT: Dense Optical Flow from Event Cameras by Mathias Gehrig, Mario Mi

Robotics and Perception Group 71 Dec 12, 2022
A Traffic Sign Recognition Project which can help the driver recognise the signs via text as well as audio. Can be used at Night also.

Traffic-Sign-Recognition In this report, we propose a Convolutional Neural Network(CNN) for traffic sign classification that achieves outstanding perf

Mini Project 64 Nov 19, 2022
Speech-Emotion-Analyzer - The neural network model is capable of detecting five different male/female emotions from audio speeches. (Deep Learning, NLP, Python)

Speech Emotion Analyzer The idea behind creating this project was to build a machine learning model that could detect emotions from the speech we have

Mitesh Puthran 965 Dec 24, 2022
UltraGCN: An Ultra Simplification of Graph Convolutional Networks for Recommendation

UltraGCN This is our Pytorch implementation for our CIKM 2021 paper: Kelong Mao, Jieming Zhu, Xi Xiao, Biao Lu, Zhaowei Wang, Xiuqiang He. UltraGCN: A

XUEPAI 93 Jan 03, 2023
Doosan robotic arm, simulation, control, visualization in Gazebo and ROS2 for Reinforcement Learning.

Robotic Arm Simulation in ROS2 and Gazebo General Overview This repository includes: First, how to simulate a 6DoF Robotic Arm from scratch using GAZE

David Valencia 12 Jan 02, 2023
Official PyTorch code for Hierarchical Conditional Flow: A Unified Framework for Image Super-Resolution and Image Rescaling (HCFlow, ICCV2021)

Hierarchical Conditional Flow: A Unified Framework for Image Super-Resolution and Image Rescaling (HCFlow, ICCV2021) This repository is the official P

Jingyun Liang 159 Dec 30, 2022
A demonstration of using a live Tensorflow session to create an interactive face-GAN explorer.

Streamlit Demo: The Controllable GAN Face Generator This project highlights Streamlit's new hash_func feature with an app that calls on TensorFlow to

Streamlit 257 Dec 31, 2022
Pytorch Implementation of "Desigining Network Design Spaces", Radosavovic et al. CVPR 2020.

RegNet Pytorch Implementation of "Desigining Network Design Spaces", Radosavovic et al. CVPR 2020. Paper | Official Implementation RegNet offer a very

Vishal R 2 Feb 11, 2022