LogAvgExp - Pytorch Implementation of LogAvgExp

Overview

LogAvgExp - Pytorch

Implementation of LogAvgExp for Pytorch

Install

$ pip install logavgexp-pytorch

Usage

import torch
from logavgexp_pytorch import logavgexp

# basically it is an improved logsumexp (differentiable max)
# normalized for length

x = torch.arange(1000)
y = logavgexp(x, dim = 0, temp = 0.01) # ~998.8

# more than 1 dimension

x = torch.randn(1, 2048, 5)
y = logavgexp(x, dim = 1, temp = 0.2) # (1, 5)

# keep dimension

x = torch.randn(1, 2048, 5)
y = logavgexp(x, dim = 1, temp = 0.2, keepdim = True) # (1, 1, 5)

# masking (False for mask out with large negative value)

x = torch.randn(1, 2048, 5)
m = torch.randint(0, 2, (1, 2048, 1)).bool()

y = logavgexp(x, mask = m, dim = 1, temp = 0.2, keepdim = True) # (1, 1, 5)

With learned temperature

# learned temperature
import torch
from torch import nn
from logavgexp_pytorch import logavgexp

learned_temp = nn.Parameter(torch.ones(1) * -5).exp().clamp(min = 1e-8) # make sure temperature can't hit 0

x = torch.randn(1, 2048, 5)
y = logavgexp(x, temp = learned_temp, dim = -1) # (1, 5)

Or you can use the LogAvgExp class to handle the learned temperature parameter

import torch
from logavgexp_pytorch import LogAvgExp

logavgexp = LogAvgExp(
    temp = 0.01,
    dim = 1,
    learned_temp = True
)

x = torch.randn(1, 2048, 5)
y = logavgexp(x) # (1, 5)

Citations

@misc{lowe2021logavgexp,
    title   = {LogAvgExp Provides a Principled and Performant Global Pooling Operator}, 
    author  = {Scott C. Lowe and Thomas Trappenberg and Sageev Oore},
    year    = {2021},
    eprint  = {2111.01742},
    archivePrefix = {arXiv},
    primaryClass = {cs.LG}
}
You might also like...
A PyTorch Extension: Tools for easy mixed precision and distributed training in Pytorch

This repository holds NVIDIA-maintained utilities to streamline mixed precision and distributed training in Pytorch. Some of the code here will be included in upstream Pytorch eventually. The intention of Apex is to make up-to-date utilities available to users as quickly as possible.

Objective of the repository is to learn and build machine learning models using Pytorch. 30DaysofML Using Pytorch
Objective of the repository is to learn and build machine learning models using Pytorch. 30DaysofML Using Pytorch

30 Days Of Machine Learning Using Pytorch Objective of the repository is to learn and build machine learning models using Pytorch. List of Algorithms

Pretrained SOTA Deep Learning models, callbacks and more for research and production with PyTorch Lightning and PyTorch
Pretrained SOTA Deep Learning models, callbacks and more for research and production with PyTorch Lightning and PyTorch

Pretrained SOTA Deep Learning models, callbacks and more for research and production with PyTorch Lightning and PyTorch

Amazon Forest Computer Vision: Satellite Image tagging code using PyTorch / Keras with lots of PyTorch tricks
Amazon Forest Computer Vision: Satellite Image tagging code using PyTorch / Keras with lots of PyTorch tricks

Amazon Forest Computer Vision Satellite Image tagging code using PyTorch / Keras Here is a sample of images we had to work with Source: https://www.ka

The Incredible PyTorch: a curated list of tutorials, papers, projects, communities and more relating to PyTorch.
The Incredible PyTorch: a curated list of tutorials, papers, projects, communities and more relating to PyTorch.

This is a curated list of tutorials, projects, libraries, videos, papers, books and anything related to the incredible PyTorch. Feel free to make a pu

Amazon Forest Computer Vision: Satellite Image tagging code using PyTorch / Keras with lots of PyTorch tricks
Amazon Forest Computer Vision: Satellite Image tagging code using PyTorch / Keras with lots of PyTorch tricks

Amazon Forest Computer Vision Satellite Image tagging code using PyTorch / Keras Here is a sample of images we had to work with Source: https://www.ka

A bunch of random PyTorch models using PyTorch's C++ frontend
A bunch of random PyTorch models using PyTorch's C++ frontend

PyTorch Deep Learning Models using the C++ frontend Gettting started Clone the repo 1. https://github.com/mrdvince/pytorchcpp 2. cd fashionmnist or

PyTorch Autoencoders - Implementing a Variational Autoencoder (VAE) Series in Pytorch.

PyTorch Autoencoders Implementing a Variational Autoencoder (VAE) Series in Pytorch. Inspired by this repository Model List check model paper conferen

PyTorch-LIT is the Lite Inference Toolkit (LIT) for PyTorch which focuses on easy and fast inference of large models on end-devices.

PyTorch-LIT PyTorch-LIT is the Lite Inference Toolkit (LIT) for PyTorch which focuses on easy and fast inference of large models on end-devices. With

Comments
  • Enhancement: 2d Pooling

    Enhancement: 2d Pooling

    Could put in 2d pooling for an easy to drop in alternative to AvgPool2d by using pixel_unshuffle for cases where there's exact divisions of an input shape, or padding and unfold for overlapping windows / strides that aren't equal to the window size.

    I don't know how fast Unfold is or if there's a better way to do the operation; I tried checking the PyTorch github to see how it does AvgPool2d for strides that aren't equal to the window size behind the scenes but I can never seem to figure out which version of the operation is the one that's used, it's defined in so many places it's beyond me.

    I've once seen an alternative to pixel unshuffle that used grouped conv2d, a kernel that put each position into its own channel output, and stride, but I can't seem to find it again. It was useful because you could adjust the stride and then it'd be like Unfold, but I never got around to testing if it was actually faster.

    opened by torridgristle 6
  • learned temperature stagnates at a low value (a high value is expected)

    learned temperature stagnates at a low value (a high value is expected)

    Hi,

    Big thanks for your pytorch implementation of the logavgexp !

    I noticed that it is easy for logavgexp to reproduce the max operator (temperature goes nicely to 0); but it has trouble reproducing the mean operator, the temperature stagnates in the following example at 0.35; do your have an explanation for that or ways to circumvent this issue? Thanks !

    import torch
    torch.manual_seed(12345)
    from logavgexp_pytorch import LogAvgExp
    
    B = 10
    N = 20
    x = torch.randn(B,N)
    #y, _ = x.max(dim=-1, keepdim=True)
    y    = x.mean(dim=-1, keepdim=True)
    logavgexp = LogAvgExp(
        temp = 1,
        dim = 1,
        learned_temp = True,
        keepdim = True)
    
    optimizer = torch.optim.Adam(logavgexp.parameters(), lr=0.01)
    loss_func = torch.nn.MSELoss()
    scheduler = torch.optim.lr_scheduler.ReduceLROnPlateau(optimizer,
                                                           factor=0.5,
                                                           patience=100,
                                                           verbose=True)
    
    for i in range(10000):
        prediction = logavgexp(x)
        loss = loss_func(prediction, y) 
        optimizer.zero_grad()
        loss.backward()        
        optimizer.step()
        scheduler.step(loss, epoch=i)
        print(f"ite: {i}, loss: {loss.item():.2e}, temperature: {logavgexp.temp.exp().item():.4f}")      
        
    
    
    opened by ldv1 0
Releases(0.0.6)
Owner
Phil Wang
Working with Attention. It's all we need
Phil Wang
Implémentation en pyhton de l'article Depixelizing pixel art de Johannes Kopf et Dani Lischinski

Implémentation en pyhton de l'article Depixelizing pixel art de Johannes Kopf et Dani Lischinski

TableauBits 3 May 29, 2022
Simple-Neural-Network From Scratch in Python

Simple-Neural-Network From Scratch in Python This is a simple Neural Network created without any Machine Learning Libraries. The only dependencies are

Aum Shah 1 Dec 28, 2021
CUDA Python Low-level Bindings

CUDA Python Low-level Bindings

NVIDIA Corporation 529 Jan 03, 2023
Official implementation of EfficientPose

EfficientPose This is the official implementation of EfficientPose. We based our work on the Keras EfficientDet implementation xuannianz/EfficientDet

2 May 17, 2022
A list of all named GANs!

The GAN Zoo Every week, new GAN papers are coming out and it's hard to keep track of them all, not to mention the incredibly creative ways in which re

Avinash Hindupur 12.9k Jan 08, 2023
Facebook Research 605 Jan 02, 2023
Training BERT with Compute/Time (Academic) Budget

Training BERT with Compute/Time (Academic) Budget This repository contains scripts for pre-training and finetuning BERT-like models with limited time

Intel Labs 263 Jan 07, 2023
MLOps will help you to understand how to build a Continuous Integration and Continuous Delivery pipeline for an ML/AI project.

page_type languages products description sample python azure azure-machine-learning-service azure-devops Code which demonstrates how to set up and ope

1 Nov 01, 2021
Face Recognition plus identification simply and fast | Python

PyFaceDetection Face Recognition plus identification simply and fast Ubuntu Setup sudo pip3 install numpy sudo pip3 install cmake sudo pip3 install dl

Peyman Majidi Moein 16 Sep 22, 2022
This repo includes the supplementary of our paper "CEMENT: Incomplete Multi-View Weak-Label Learning with Long-Tailed Labels"

Supplementary Materials for CEMENT: Incomplete Multi-View Weak-Label Learning with Long-Tailed Labels This repository includes all supplementary mater

Zhiwei Li 0 Jan 05, 2022
pytorch implementation of Attention is all you need

A Pytorch Implementation of the Transformer: Attention Is All You Need Our implementation is largely based on Tensorflow implementation Requirements N

230 Dec 07, 2022
Efficient semidefinite bounds for multi-label discrete graphical models.

Low rank solvers #################################### benchmark/ : folder with the random instances used in the paper. ############################

1 Dec 08, 2022
Local Multi-Head Channel Self-Attention for FER2013

LHC-Net Local Multi-Head Channel Self-Attention This repository is intended to provide a quick implementation of the LHC-Net and to replicate the resu

12 Jan 04, 2023
Learning to Prompt for Continual Learning

Learning to Prompt for Continual Learning (L2P) Official Jax Implementation L2P is a novel continual learning technique which learns to dynamically pr

Google Research 207 Jan 06, 2023
GuideDog is an AI/ML-based mobile app designed to assist the lives of the visually impaired, 100% voice-controlled

Guidedog Authors: Kyuhee Jo, Steven Gunarso, Jacky Wang, Raghav Sharma GuideDog is an AI/ML-based mobile app designed to assist the lives of the visua

Kyuhee Jo 5 Nov 24, 2021
Official repository of PanoAVQA: Grounded Audio-Visual Question Answering in 360° Videos (ICCV 2021)

Pano-AVQA Official repository of PanoAVQA: Grounded Audio-Visual Question Answering in 360° Videos (ICCV 2021) [Paper] [Poster] [Video] Getting Starte

Heeseung Yun 9 Dec 23, 2022
scikit-learn: machine learning in Python

scikit-learn is a Python module for machine learning built on top of SciPy and is distributed under the 3-Clause BSD license. The project was started

scikit-learn 52.5k Jan 08, 2023
Autotype on websites that have copy-paste disabled like Moodle, HackerEarth contest etc.

Autotype A quick and small python script that helps you autotype on websites that have copy paste disabled like Moodle, HackerEarth contests etc as it

Tushar 32 Nov 03, 2022
PyTorch implementation HoroPCA: Hyperbolic Dimensionality Reduction via Horospherical Projections

HoroPCA This code is the official PyTorch implementation of the ICML 2021 paper: HoroPCA: Hyperbolic Dimensionality Reduction via Horospherical Projec

HazyResearch 52 Nov 14, 2022
Classification of EEG data using Deep Learning

Graduation-Project Classification of EEG data using Deep Learning Epilepsy is the most common neurological disease in the world. Epilepsy occurs as a

Osman Alpaydın 5 Jun 24, 2022