LibMTL: A PyTorch Library for Multi-Task Learning

Overview

LibMTL

Documentation Status License: MIT PyPI version Supported Python versions Downloads CodeFactor Maintainability Made With Love

LibMTL is an open-source library built on PyTorch for Multi-Task Learning (MTL). See the latest documentation for detailed introductions and API instructions.

Star us on GitHub — it motivates us a lot!

Table of Content

Features

  • Unified: LibMTL provides a unified code base to implement and a consistent evaluation procedure including data processing, metric objectives, and hyper-parameters on several representative MTL benchmark datasets, which allows quantitative, fair, and consistent comparisons between different MTL algorithms.
  • Comprehensive: LibMTL supports 84 MTL models combined by 7 architectures and 12 loss weighting strategies. Meanwhile, LibMTL provides a fair comparison on 3 computer vision datasets.
  • Extensible: LibMTL follows the modular design principles, which allows users to flexibly and conveniently add customized components or make personalized modifications. Therefore, users can easily and fast develop novel loss weighting strategies and architectures or apply the existing MTL algorithms to new application scenarios with the support of LibMTL.

Overall Framework

framework.

  • Config Module: Responsible for all the configuration parameters involved in the running framework, including the parameters of optimizer and learning rate scheduler, the hyper-parameters of MTL model, training configuration like batch size, total epoch, random seed and so on.
  • Dataloaders Module: Responsible for data pre-processing and loading.
  • Model Module: Responsible for inheriting classes architecture and weighting and instantiating a MTL model. Note that the architecture and the weighting strategy determine the forward and backward processes of the MTL model, respectively.
  • Losses Module: Responsible for computing the loss for each task.
  • Metrics Module: Responsible for evaluating the MTL model and calculating the metric scores for each task.

Supported Algorithms

LibMTL currently supports the following algorithms:

  • 12 loss weighting strategies.
Weighting Strategy Venues Comments
Equally Weighting (EW) - Implemented by us
Gradient Normalization (GradNorm) ICML 2018 Implemented by us
Uncertainty Weights (UW) CVPR 2018 Implemented by us
MGDA NeurIPS 2018 Referenced from official PyTorch implementation
Dynamic Weight Average (DWA) CVPR 2019 Referenced from official PyTorch implementation
Geometric Loss Strategy (GLS) CVPR 2019 workshop Implemented by us
Projecting Conflicting Gradient (PCGrad) NeurIPS 2020 Implemented by us
Gradient sign Dropout (GradDrop) NeurIPS 2020 Implemented by us
Impartial Multi-Task Learning (IMTL) ICLR 2021 Implemented by us
Gradient Vaccine (GradVac) ICLR 2021 Spotlight Implemented by us
Conflict-Averse Gradient descent (CAGrad) NeurIPS 2021 Referenced from official PyTorch implementation
Random Loss Weighting (RLW) arXiv Implemented by us
  • 7 architectures.
Architecture Venues Comments
Hrad Parameter Sharing (HPS) ICML 1993 Implemented by us
Cross-stitch Networks (Cross_stitch) CVPR 2016 Implemented by us
Multi-gate Mixture-of-Experts (MMoE) KDD 2018 Implemented by us
Multi-Task Attention Network (MTAN) CVPR 2019 Referenced from official PyTorch implementation
Customized Gate Control (CGC) ACM RecSys 2020 Best Paper Implemented by us
Progressive Layered Extraction (PLE) ACM RecSys 2020 Best Paper Implemented by us
DSelect-k NeurIPS 2021 Referenced from official TensorFlow implementation
  • 84 combinations of different architectures and loss weighting strategies.

Installation

The simplest way to install LibMTL is using pip.

pip install -U LibMTL

More details about environment configuration is represented in Docs.

Quick Start

We use the NYUv2 dataset as an example to show how to use LibMTL.

Download Dataset

The NYUv2 dataset we used is pre-processed by mtan. You can download this dataset here.

Run a Model

The complete training code for the NYUv2 dataset is provided in examples/nyu. The file train_nyu.py is the main file for training on the NYUv2 dataset.

You can find the command-line arguments by running the following command.

python train_nyu.py -h

For instance, running the following command will train a MTL model with EW and HPS on NYUv2 dataset.

python train_nyu.py --weighting EW --arch HPS --dataset_path /path/to/nyuv2 --gpu_id 0 --scheduler step

More details is represented in Docs.

Citation

If you find LibMTL useful for your research or development, please cite the following:

@misc{LibMTL,
 author = {Baijiong Lin and Yu Zhang},
 title = {LibMTL: A PyTorch Library for Multi-Task Learning},
 year = {2021},
 publisher = {GitHub},
 journal = {GitHub repository},
 howpublished = {\url{https://github.com/median-research-group/LibMTL}}
}

Contributors

LibMTL is developed and maintained by Baijiong Lin and Yu Zhang.

Contact Us

If you have any question or suggestion, please feel free to contact us by raising an issue or sending an email to [email protected].

Acknowledgements

We would like to thank the authors that release the public repositories (listed alphabetically): CAGrad, dselect_k_moe, MultiObjectiveOptimization, and mtan.

License

LibMTL is released under the MIT license.

Annealed Flow Transport Monte Carlo

Annealed Flow Transport Monte Carlo Open source implementation accompanying ICML 2021 paper by Michael Arbel*, Alexander G. D. G. Matthews* and Arnaud

DeepMind 30 Nov 21, 2022
Code for the paper: Learning Adversarially Robust Representations via Worst-Case Mutual Information Maximization (https://arxiv.org/abs/2002.11798)

Representation Robustness Evaluations Our implementation is based on code from MadryLab's robustness package and Devon Hjelm's Deep InfoMax. For all t

Sicheng 19 Dec 07, 2022
This repository contains a pytorch implementation of "StereoPIFu: Depth Aware Clothed Human Digitization via Stereo Vision".

StereoPIFu: Depth Aware Clothed Human Digitization via Stereo Vision | Project Page | Paper | This repository contains a pytorch implementation of "St

87 Dec 09, 2022
시각 장애인을 위한 스마트 지팡이에 활용될 딥러닝 모델 (DL Model Repo)

SmartCane-DL-Model Smart Cane using semantic segmentation 참고한 Github repositoy 🔗 https://github.com/JunHyeok96/Road-Segmentation.git 데이터셋 🔗 https://

반드시 졸업한다 (Team Just Graduate) 4 Dec 03, 2021
This repository contains the official implementation code of the paper Transformer-based Feature Reconstruction Network for Robust Multimodal Sentiment Analysis

This repository contains the official implementation code of the paper Transformer-based Feature Reconstruction Network for Robust Multimodal Sentiment Analysis, accepted at ACMMM 2021.

Ziqi Yuan 10 Sep 30, 2022
Source code for NAACL 2021 paper "TR-BERT: Dynamic Token Reduction for Accelerating BERT Inference"

TR-BERT Source code and dataset for "TR-BERT: Dynamic Token Reduction for Accelerating BERT Inference". The code is based on huggaface's transformers.

THUNLP 37 Oct 30, 2022
Editing a Conditional Radiance Field

Editing Conditional Radiance Fields Project | Paper | Video | Demo Editing Conditional Radiance Fields Steven Liu, Xiuming Zhang, Zhoutong Zhang, Rich

Steven Liu 216 Dec 30, 2022
Autonomous Movement from Simultaneous Localization and Mapping

Autonomous Movement from Simultaneous Localization and Mapping About us Built by a group of Clarkson University students with the help from Professor

14 Nov 07, 2022
[IJCAI-2021] A benchmark of data-free knowledge distillation from paper "Contrastive Model Inversion for Data-Free Knowledge Distillation"

DataFree A benchmark of data-free knowledge distillation from paper "Contrastive Model Inversion for Data-Free Knowledge Distillation" Authors: Gongfa

ZJU-VIPA 47 Jan 09, 2023
Addition of pseudotorsion caclulation eta, theta, eta', and theta' to barnaba package

Addition to Original Barnaba Code: This is modified version of Barnaba package to calculate RNA pseudotorsion angles eta, theta, eta', and theta'. Ple

Mandar Kulkarni 1 Jan 11, 2022
An implementation of Equivariant e2 convolutional kernals into a convolutional self attention network, applied to radio astronomy data.

EquivariantSelfAttention An implementation of Equivariant e2 convolutional kernals into a convolutional self attention network, applied to radio astro

2 Nov 09, 2021
DAN: Unfolding the Alternating Optimization for Blind Super Resolution

DAN-Basd-on-Openmmlab DAN: Unfolding the Alternating Optimization for Blind Super Resolution We reproduce DAN via mmediting based on open-sourced code

AlexZou 72 Dec 13, 2022
Library for converting from RGB / GrayScale image to base64 and back.

Library for converting RGB / Grayscale numpy images from to base64 and back. Installation pip install -U image_to_base_64 Conversion RGB to base 64 b

Vladimir Iglovikov 16 Aug 28, 2022
A practical ML pipeline for data labeling with experiment tracking using DVC.

Auto Label Pipeline A practical ML pipeline for data labeling with experiment tracking using DVC Goals: Demonstrate reproducible ML Use DVC to build a

Todd Cook 4 Mar 08, 2022
Massively parallel Monte Carlo diffusion MR simulator written in Python.

Disimpy Disimpy is a Python package for generating simulated diffusion-weighted MR signals that can be useful in the development and validation of dat

Leevi 16 Nov 11, 2022
Denoising Diffusion Implicit Models

Denoising Diffusion Implicit Models (DDIM) Jiaming Song, Chenlin Meng and Stefano Ermon, Stanford Implements sampling from an implicit model that is t

465 Jan 05, 2023
Contrastive Learning for Metagenomic Binning

CLMB A simple framework for CLMB - a novel deep Contrastive Learningfor Metagenomic Binning Created by Pengfei Zhang, senior of Department of Computer

1 Sep 14, 2022
(SIGIR2020) “Asymmetric Tri-training for Debiasing Missing-Not-At-Random Explicit Feedback’’

Asymmetric Tri-training for Debiasing Missing-Not-At-Random Explicit Feedback About This repository accompanies the real-world experiments conducted i

yuta-saito 19 Dec 01, 2022
System-oriented IR evaluations are limited to rather abstract understandings of real user behavior

Validating Simulations of User Query Variants This repository contains the scripts of the experiments and evaluations, simulated queries, as well as t

IR Group at Technische Hochschule Köln 2 Nov 23, 2022
A short and easy PyTorch implementation of E(n) Equivariant Graph Neural Networks

Simple implementation of Equivariant GNN A short implementation of E(n) Equivariant Graph Neural Networks for HOMO energy prediction. Just 50 lines of

Arsenii Senya Ashukha 97 Dec 23, 2022