Official repository for Jia, Raghunathan, Göksel, and Liang, "Certified Robustness to Adversarial Word Substitutions" (EMNLP 2019)

Overview

Certified Robustness to Adversarial Word Substitutions

This is the official GitHub repository for the following paper:

Certified Robustness to Adversarial Word Substitutions.
Robin Jia, Aditi Raghunathan, Kerem Göksel, and Percy Liang.
Empirical Methods in Natural Language Processing (EMNLP), 2019.

For full details on reproducing the results, see this Codalab worksheet, which contains all code, data, and experiments from the paper. This GitHub repository serves as an easy way to get started with the code, and has some additional instructions and documentation.

Setup

This code has been tested with python3.6, pytorch 1.3.1, numpy 1.15.4, and NLTK 3.4.

Download data dependencies by running the provided script:

./download_deps.sh

If you already have GloVe vectors on your system, it may be more convenient to comment out the part of download_deps.sh that downloads GloVe, and instead add a symlink to the directory containing the GloVe vectors at data/glove.

Interval Bound Propagation library

We have implemented many primitives for Interval Bound Propagation (IBP), which can be found in src/ibp.py. This code should be reusable and intuitive for anyone familiar with pytorch. When designing this library, our goal was to make it possible to write code that looks like standard pytorch code, but can be trained with IBP. Below, we give an overview of the code.

BoundedTensor

BoundedTensor is our version of torch.Tensor. It represents a tensor that additionally has some bounded set of possible values. The two most important subclasses of BoundedTensor are IntervalBoundedTensor and DiscreteChoiceTensor.

IntervalBoundedTensor

An IntervalBoundedTensor keeps track of three instance variables: an actual value, a coordinate-wise upper bound on the value, and a coordinate-wise lower bound on the value. All three of these are torch.Tensor objects. It also implements many standard methods of torch.Tensor.

DiscreteChoiceTensor

A DiscreteChoiceTensor represents a tensor that can take a discrete set of values. We use DiscreteChoiceTensor to represent the set of possible word vectors that can appear at each slice of the input. Importantly, DiscreteChoiceTensor.to_interval_bounded() converts a DiscreteChoiceTensor to an IntervalBoundedTensor by taking a coordinate-wise min/max.

NormBallTensor

We also provide NormBallTensor, which represents a p-norm ball of a given radius around a value.

Functions and layers

To go with BoundedTensor, we include functions and layers that know how to take BoundedTensor objects as inputs and return BoundedTensor objects as outputs. Most of these should be straightforward to use for folks familiar with their standard torch, torch.nn, and torch.nn.functional equivalents (with a caveat that not all flags in the standard library are necessarily supported).

Functions

Available implementations of basic torch functions include:

  • add
  • mul
  • div
  • bmm
  • cat
  • stack
  • sum

In many cases, we directly call the torch counterpart if the inputs are torch.Tensor objects. A few additional cases are described below.

Activation functions

Since monotonic functions all use the same IBP formula, we export a single function ibp.activation which can apply elementwise ReLU, sigmoid, tanh, or exp to an IntervalBoundedTensor.

Logsoftmax

We include a log_softmax() function that is equivalent to torch.nn.functional.log_softmax(). We strongly advise users to use this implementation rather than implementing their own softmax operation, as numerical instability can easily arise with a naive implementation.

Nonnegative matrix multiplication

We include matmul_nneg() function that handles matrix multiplication between two non-negative matrices, as this is simpler than the general case.

Layers (nn.Module objects)

Many basic layers are implemented by extending their torch.nn counterparts, including

  • Linear
  • Embedding
  • Conv1d
  • MaxPool1d
  • LSTM
  • Dropout

RNNs

Our library also includes LSTM and GRU classes, which extend nn.Module directly. These are unfortunately slower than their torch.nn counterparts, because the torch.nn RNN's use cuDNN.

Examples

If you want to see this library in action, a good place to start is BOWModel in src/text_classification.py. This implements a simple bag-of-words model for text classification. Note that in forward(), we accept a flag called compute_bounds which lets the user decide whether to run IBP or not.

Paper experiments

In this repository, we include a minimal set of commands and instructions to reproduce a few key results from our EMNLP 2019 paper. We will focus on the CNN model results on the IMDB dataset. To see other available command line flags, you can run python src/train.py -h.

If you are interested in reproducing our experiments, we recommend looking at the aforementioned Codalab worksheet, which shows how to reproduce all results in our paper. Note that the commands on Codalab include some extra flags (--neighbor-file, --glove-dir, --imdb-dir, and --snli-dir) that are used to specify non-default paths to files. These flags are unnecessary when following the instructions in this repository.

Training

Here are commands to train the CNN model on IMDB with standard training, certifiably robust training, and data augmentation.

Standard training

To train the baseline model without IBP, run the following:

python src/train.py classification cnn outdir_cnn_normal -d 100 --pool mean -T 10 --dropout-prob 0.2 -b 32 --save-best-only

This should get about 88% accuracy on dev (but 0% certified accuracy). outdir_cnn_normal is an output directory where model parameters and stats will be saved.

Certifiably robust training

To use certifiably robust training with IBP, run the following:

python src/train.py classification cnn outdir_cnn_cert -d 100 --pool mean -T 60 --full-train-epochs 20 -c 0.8 --dropout-prob 0.2 -b 32 --save-best-only

This should get about 81% accuracy and 66% certified accuracy on dev. Note that these results do not include language model constraints on the attack surface, and therefore the certified accuracy is a bit too low. These constraints will be enforced in the testing commands below.

Training with data augmentation

To train with data augmentation, run the following:

python src/train.py classification cnn outdir_cnn_aug -d 100 --pool mean -T 60 --augment-by 4 --dropout-prob 0.2 -b 32 --save-best-only

This should get about 85% accuracy and 84% augmented accuracy on dev (but 0% certified accuracy).

Testing

Next, we will show how to test the trained models using the genetic attack. The genetic attack heuristically searches for a perturbation that causes an error. In this phase, we also incorporate pre-computed language model scores that determine which perturbations are valid.

For example, let's say we want to use the trained model inside the outdir_cnn_cert directory. First, we choose a checkpoint based on the best certified accuracy on the dev set, say checkpoint 57. (Note: the training code with --save-best-only will save only the best model and the final model; stats on all checkpoints are logged in <outdir>/all_epoch_stats.json.)

This command will run the genetic attack:

python src/train.py classification cnn eval_cnn_cert -L outdir_cnn_cert --load-ckpt 57 -d 100 --pool mean -T 0 -b 1 -a genetic --adv-num-epochs 40 --adv-pop-size 60 --use-lm --downsample-to 1000

It should get about 80% standard accuracy, 72.5% certified accuracy, and 73% adversarial accuracy (i.e., accuracy against the genetic attack). For all models, you should find that adversarial accuracy is between standard accuracy and certified accuracy. For IMDB, we downsample to 1000 examples, as the genetic attack is pretty slow; the provided precomputed LM scores (in lm_scores) are only for the first 1000 examples in the train, development, and test sets. For SNLI, we use the entire development and test sets for evaluation.

Note: This code is sensitive to the version of NLTK you use. The LM prediction files provided here should work if you are using the current version of NLTK and have updated your nltk_data directory recently. The experiments on Codalab use an older NLTK version; you can download the LM files from Codalab if you need compatibility with older NLTK versions. NLTK version issues will result in a KeyError with an Unrecognized sentence message.

Running the language model yourself

If you want to precompute language model scores on other data, use the following instructions.

  1. Clone the following git repository:
git clone https://github.com/robinjia/l2w windweller-l2w
  1. Obtain pre-trained parameters and put them in a directory named l2w-params within that repository. Please contact us if you need a copy of the parameters.

  2. Adapt src/precompute_lm_scores.py for your dataset.

Automatically Build Multiple ML Models with a Single Line of Code. Created by Ram Seshadri. Collaborators Welcome. Permission Granted upon Request.

Auto-ViML Automatically Build Variant Interpretable ML models fast! Auto_ViML is pronounced "auto vimal" (autovimal logo created by Sanket Ghanmare) N

AutoViz and Auto_ViML 397 Dec 30, 2022
Unleashing Transformers: Parallel Token Prediction with Discrete Absorbing Diffusion for Fast High-Resolution Image Generation from Vector-Quantized Codes

Unleashing Transformers: Parallel Token Prediction with Discrete Absorbing Diffusion for Fast High-Resolution Image Generation from Vector-Quantized C

Sam Bond-Taylor 139 Jan 04, 2023
The code for our paper CrossFormer: A Versatile Vision Transformer Based on Cross-scale Attention.

CrossFormer This repository is the code for our paper CrossFormer: A Versatile Vision Transformer Based on Cross-scale Attention. Introduction Existin

cheerss 238 Jan 06, 2023
Pure python implementation reverse-mode automatic differentiation

MiniGrad A minimal implementation of reverse-mode automatic differentiation (a.k.a. autograd / backpropagation) in pure Python. Inspired by Andrej Kar

Kenny Song 76 Sep 12, 2022
A very simple tool for situations where optimization with onnx-simplifier would exceed the Protocol Buffers upper file size limit of 2GB, or simply to separate onnx files to any size you want.

sne4onnx A very simple tool for situations where optimization with onnx-simplifier would exceed the Protocol Buffers upper file size limit of 2GB, or

Katsuya Hyodo 10 Aug 30, 2022
[ICML 2021] DouZero: Mastering DouDizhu with Self-Play Deep Reinforcement Learning | 斗地主AI

[ICML 2021] DouZero: Mastering DouDizhu with Self-Play Deep Reinforcement Learning DouZero is a reinforcement learning framework for DouDizhu (斗地主), t

Kwai Inc. 3.1k Jan 04, 2023
Deep Learning ❤️ OneFlow

Deep Learning with OneFlow made easy 🚀 ! Carefree? carefree-learn aims to provide CAREFREE usages for both users and developers. User Side Computer V

21 Oct 27, 2022
A Python package for time series augmentation

tsaug tsaug is a Python package for time series augmentation. It offers a set of augmentation methods for time series, as well as a simple API to conn

Arundo Analytics 278 Jan 01, 2023
A Conditional Point Diffusion-Refinement Paradigm for 3D Point Cloud Completion

A Conditional Point Diffusion-Refinement Paradigm for 3D Point Cloud Completion This repo intends to release code for our work: Zhaoyang Lyu*, Zhifeng

Zhaoyang Lyu 68 Jan 03, 2023
🚀 An end-to-end ML applications using PyTorch, W&B, FastAPI, Docker, Streamlit and Heroku

🚀 An end-to-end ML applications using PyTorch, W&B, FastAPI, Docker, Streamlit and Heroku

Made With ML 82 Jun 26, 2022
TF Image Segmentation: Image Segmentation framework

TF Image Segmentation: Image Segmentation framework The aim of the TF Image Segmentation framework is to provide/provide a simplified way for: Convert

Daniil Pakhomov 546 Dec 17, 2022
Weakly Supervised Dense Event Captioning in Videos, i.e. generating multiple sentence descriptions for a video in a weakly-supervised manner.

WSDEC This is the official repo for our NeurIPS paper Weakly Supervised Dense Event Captioning in Videos. Description Repo directories ./: global conf

Melon(Xuguang Duan) 96 Nov 01, 2022
Parris, the automated infrastructure setup tool for machine learning algorithms.

README Parris, the automated infrastructure setup tool for machine learning algorithms. What Is This Tool? Parris is a tool for automating the trainin

Joseph Greene 319 Aug 02, 2022
PaddleBoBo是基于PaddlePaddle和PaddleSpeech、PaddleGAN等开发套件的虚拟主播快速生成项目

PaddleBoBo - 元宇宙时代,你也可以动手做一个虚拟主播。 PaddleBoBo是基于飞桨PaddlePaddle深度学习框架和PaddleSpeech、PaddleGAN等开发套件的虚拟主播快速生成项目。PaddleBoBo致力于简单高效、可复用性强,只需要一张带人像的图片和一段文字,就能

502 Jan 08, 2023
IAST: Instance Adaptive Self-training for Unsupervised Domain Adaptation (ECCV 2020)

This repo is the official implementation of our paper "Instance Adaptive Self-training for Unsupervised Domain Adaptation". The purpose of this repo is to better communicate with you and respond to y

CVSM Group - email: <a href=[email protected]"> 84 Dec 12, 2022
A Runtime method overload decorator which should behave like a compiled language

strongtyping-pyoverload A Runtime method overload decorator which should behave like a compiled language there is a override decorator from typing whi

20 Oct 31, 2022
Parameter-ensemble-differential-evolution - Shows how to do parameter ensembling using differential evolution.

Ensembling parameters with differential evolution This repository shows how to ensemble parameters of two trained neural networks using differential e

Sayak Paul 9 May 04, 2022
A pure PyTorch batched computation implementation of "CIF: Continuous Integrate-and-Fire for End-to-End Speech Recognition"

A pure PyTorch batched computation implementation of "CIF: Continuous Integrate-and-Fire for End-to-End Speech Recognition"

張致強 14 Dec 02, 2022
Dynamical Wasserstein Barycenters for Time Series Modeling

Dynamical Wasserstein Barycenters for Time Series Modeling This is the code related for the Dynamical Wasserstein Barycenter model published in Neurip

8 Sep 09, 2022
SparseML is a libraries for applying sparsification recipes to neural networks with a few lines of code, enabling faster and smaller models

SparseML is a toolkit that includes APIs, CLIs, scripts and libraries that apply state-of-the-art sparsification algorithms such as pruning and quantization to any neural network. General, recipe-dri

Neural Magic 1.5k Dec 30, 2022