Automatically Build Multiple ML Models with a Single Line of Code. Created by Ram Seshadri. Collaborators Welcome. Permission Granted upon Request.

Overview

Auto-ViML

banner

Downloads Downloads Downloads standard-readme compliant Python Versions PyPI Version PyPI License

Automatically Build Variant Interpretable ML models fast! Auto_ViML is pronounced "auto vimal" (autovimal logo created by Sanket Ghanmare)

NEW FEATURES in this version are:
1. SMOTE -> now we use SMOTE for imbalanced data. Just set Imbalanced_Flag = True in input below
2. Auto_NLP: It automatically detects Text variables and does NLP processing on those columns
3. Date Time Variables: It automatically detects date time variables and adds extra features
4. Feature Engineering: Now you can perform feature engineering with the available featuretools library.

To upgrade to the best, most stable and full-featured version (anything over > 0.1.600), do one of the following:
Use $ pip install autoviml --upgrade --ignore-installed
or pip install git+https://github.com/AutoViML/Auto_ViML.git

Table of Contents

Background

Read this Medium article to learn how to use Auto_ViML.

Auto_ViML was designed for building High Performance Interpretable Models with the fewest variables. The "V" in Auto_ViML stands for Variable because it tries multiple models with multiple features to find you the best performing model for your dataset. The "i" in Auto_ViML stands for "interpretable" since Auto_ViML selects the least number of features necessary to build a simpler, more interpretable model. In most cases, Auto_ViML builds models with 20-99% fewer features than a similar performing model with all included features (this is based on my trials. Your experience may vary).

Auto_ViML is every Data Scientist's model assistant that:

  1. Helps you with data cleaning: you can send in your entire dataframe as is and Auto_ViML will suggest changes to help with missing values, formatting variables, adding variables, etc. It loves dirty data. The dirtier the better!
  2. Assists you with variable classification: Auto_ViML classifies variables automatically. This is very helpful when you have hundreds if not thousands of variables since it can readily identify which of those are numeric vs categorical vs NLP text vs date-time variables and so on.
  3. Performs feature reduction automatically. When you have small data sets and you know your domain well, it is easy to perhaps do EDA and identify which variables are important. But when you have a very large data set with hundreds if not thousands of variables, selecting the best features from your model can mean the difference between a bloated and highly complex model or a simple model with the fewest and most information-rich features. Auto_ViML uses XGBoost repeatedly to perform feature selection. You must try it on your large data sets and compare!
  4. Produces model performance results as graphs automatically. Just set verbose = 1 (or) 2
  5. Handles text, date-time, structs (lists, dictionaries), numeric, boolean, factor and categorical variables all in one model using one straight process.
  6. Allows you to use the featuretools library to do Feature Engineering.
    See example below.
    Let's say you have a few numeric features in your data called "preds". You can 'add','subtract','multiply' or 'divide' these features among themselves using this module. You can optionally send an ID column in the data so that the index ordering is preserved.
    
    from autoviml.feature_engineering import feature_engineering
    print(df[preds].shape)
    dfmod = feature_engineering(df[preds],['add'],'ID')
    print(dfmod.shape)
Auto_ViML is built using scikit-learn, Nnumpy, pandas and matplotlib. It should run on most Python 3 Anaconda installations. You won't have to import any special libraries other than "XGBoost", "Imbalanced-Learn", "CatBoost", and "featuretools" library. We use "SHAP" library for interpretability.
But if you don't have these libraries, Auto_ViML will install those for you automatically.

Install

Prerequsites:

To clone Auto_ViML, it is better to create a new environment, and install the required dependencies:

To install from PyPi:

conda create -n <your_env_name> python=3.7 anaconda
conda activate <your_env_name> # ON WINDOWS: `source activate <your_env_name>`
pip install autoviml
or
pip install git+https://github.com/AutoViML/Auto_ViML.git

To install from source:

cd <AutoVIML_Destination>
git clone [email protected]:AutoViML/Auto_ViML.git
# or download and unzip https://github.com/AutoViML/Auto_ViML/archive/master.zip
conda create -n <your_env_name> python=3.7 anaconda
conda activate <your_env_name> # ON WINDOWS: `source activate <your_env_name>`
cd Auto_ViML
pip install -r requirements.txt

Usage

In the same directory, open a Jupyter Notebook and use this line to import the .py file:

from autoviml.Auto_ViML import Auto_ViML

Load a data set (any CSV or text file) into a Pandas dataframe and split it into Train and Test dataframes. If you don't have a test dataframe, you can simple assign the test variable below to '' (empty string):

model, features, trainm, testm = Auto_ViML(
    train,
    target,
    test,
    sample_submission,
    hyper_param="GS",
    feature_reduction=True,
    scoring_parameter="weighted-f1",
    KMeans_Featurizer=False,
    Boosting_Flag=False,
    Binning_Flag=False,
    Add_Poly=False,
    Stacking_Flag=False,
    Imbalanced_Flag=False,
    verbose=0,
)

Finally, it writes your submission file to disk in the current directory called mysubmission.csv. This submission file is ready for you to show it clients or submit it to competitions. If no submission file was given, but as long as you give it a test file name, it will create a submission file for you named mySubmission.csv. Auto_ViML works on any Multi-Class, Multi-Label Data Set. So you can have many target labels. You don't have to tell Auto_ViML whether it is a Regression or Classification problem.

Tips for using Auto_ViML:

  1. For Classification problems and imbalanced classes, choose scoring_parameter="balanced_accuracy". It works better.
  2. For Imbalanced Classes (<5% samples in rare class), choose "Imbalanced_Flag"=True. You can also set this flag to True for Regression problems where the target variable might have skewed distributions.
  3. For Multi-Label dataset, the target input target variable can be sent in as a list of variables.
  4. It is recommended that you first set Boosting_Flag=None to get a Linear model. Once you understand that, then you can try to set Boosting_Flag=False to get a Random Forest model. Finally, try Boosting_Flag=True to get an XGBoost model. This is the order that we recommend in order to use Auto_ViML.
  5. Finally try Boosting_Flag="CatBoost" to get a complex but high performing model.
  6. Binning_Flag=True improves a CatBoost model since it adds to the list of categorical vars in data
  7. KMeans_featurizer=True works well in NLP and CatBoost models since it creates cluster variables
  8. Add_Poly=3 improves certain models where there is date-time or categorical and numeric variables
  9. feature_reduction=True is the default and works best. But when you have <10 features in data, set it to False
  10. Do not use Stacking_Flag=True with Linear models since your results may not look great.
  11. Use Stacking_Flag=True only for complex models and as a last step with Boosting_Flag=True or CatBoost
  12. Always set hyper_param ="RS" as input since it runs faster than GridSearchCV and gives better results!
  13. KMeans_Featurizer=True does not work well for small data sets. Use it for data sets > 10,000 rows.
  14. Finally Auto_ViML is meant to be a baseline or challenger solution to your data set. So use it for making quick models that you can compare against or in Hackathons. It is not meant for production!

API

Arguments

  • train: could be a datapath+filename or a dataframe. It will detect which is which and load it.
  • test: could be a datapath+filename or a dataframe. If you don't have any, just leave it as "".
  • submission: must be a datapath+filename. If you don't have any, just leave it as empty string.
  • target: name of the target variable in the data set.
  • sep: if you have a spearator in the file such as "," or "\t" mention it here. Default is ",".
  • scoring_parameter: if you want your own scoring parameter such as "f1" give it here. If not, it will assume the appropriate scoring param for the problem and it will build the model.
  • hyper_param: Tuning options are GridSearch ('GS') and RandomizedSearch ('RS'). Default is 'RS'.
  • feature_reduction: Default = 'True' but it can be set to False if you don't want automatic feature_reduction since in Image data sets like digits and MNIST, you get better results when you don't reduce features automatically. You can always try both and see.
  • KMeans_Featurizer
    • True: Adds a cluster label to features based on KMeans. Use for Linear.
    • False (default) For Random Forests or XGB models, leave it False since it may overfit.
  • Boosting Flag: you have 4 possible choices (default is False):
    • None This will build a Linear Model
    • False This will build a Random Forest or Extra Trees model (also known as Bagging)
    • True This will build an XGBoost model
    • CatBoost This will build a CatBoost model (provided you have CatBoost installed)
  • Add_Poly: Default is 0 which means do-nothing. But it has three interesting settings:
    • 1 Add interaction variables only such as x1x2, x2x3,...x9*10 etc.
    • 2 Add Interactions and Squared variables such as x12, x22, etc.
    • 3 Adds both Interactions and Squared variables such as x1x2, x1**2,x2x3, x2**2, etc.
  • Stacking_Flag: Default is False. If set to True, it will add an additional feature which is derived from predictions of another model. This is used in some cases but may result in overfitting. So be careful turning this flag "on".
  • Binning_Flag: Default is False. It set to True, it will convert the top numeric variables into binned variables through a technique known as "Entropy" binning. This is very helpful for certain datasets (especially hard to build models).
  • Imbalanced_Flag: Default is False. If set to True, it will use SMOTE from Imbalanced-Learn to oversample the "Rare Class" in an imbalanced dataset and make the classes balanced (50-50 for example in a binary classification). This also works for Regression problems where you have highly skewed distributions in the target variable. Auto_ViML creates additional samples using SMOTE for Highly Imbalanced data.
  • verbose: This has 3 possible states:
    • 0 limited output. Great for running this silently and getting fast results.
    • 1 more charts. Great for knowing how results were and making changes to flags in input.
    • 2 lots of charts and output. Great for reproducing what Auto_ViML does on your own.

Return values

  • model: It will return your trained model
  • features: the fewest number of features in your model to make it perform well
  • train_modified: this is the modified train dataframe after removing and adding features
  • test_modified: this is the modified test dataframe with the same transformations as train

Maintainers

Contributing

See the contributing file!

PRs accepted.

License

Apache License 2.0 © 2020 Ram Seshadri

DISCLAIMER

This project is not an official Google project. It is not supported by Google and Google specifically disclaims all warranties as to its quality, merchantability, or fitness for a particular purpose.

Owner
AutoViz and Auto_ViML
Automated Machine Learning: Build Variant Interpretable Machine Learning models. Project Created by Ram Seshadri.
AutoViz and Auto_ViML
A repository for storing njxzc final exam review material

文档地址,请戳我 👈 👈 👈 ☀️ 1.Reason 大三上期末复习软件工程的时候,发现其他高校在GitHub上开源了他们学校的期末试题,我很受触动。期末

GuJiakai 2 Jan 18, 2022
Codes of paper "Unseen Object Amodal Instance Segmentation via Hierarchical Occlusion Modeling"

Unseen Object Amodal Instance Segmentation (UOAIS) Seunghyeok Back, Joosoon Lee, Taewon Kim, Sangjun Noh, Raeyoung Kang, Seongho Bak, Kyoobin Lee This

GIST-AILAB 92 Dec 13, 2022
Method for facial emotion recognition compitition of Xunfei and Datawhale .

人脸情绪识别挑战赛-第3名-W03KFgNOc-源代码、模型以及说明文档 队名:W03KFgNOc 排名:3 正确率: 0.75564 队员:yyMoming,xkwang,RichardoMu。 比赛链接:人脸情绪识别挑战赛 文章地址:link emotion 该项目分别训练八个模型并生成csv文

6 Oct 17, 2022
The coda and data for "Measuring Fine-Grained Domain Relevance of Terms: A Hierarchical Core-Fringe Approach" (ACL '21)

We propose a hierarchical core-fringe learning framework to measure fine-grained domain relevance of terms – the degree that a term is relevant to a broad (e.g., computer science) or narrow (e.g., de

Jie Huang 14 Oct 21, 2022
The final project for "Applying AI to Wearable Device Data" course from "AI for Healthcare" - Udacity.

Motion Compensated Pulse Rate Estimation Overview This project has 2 main parts. Develop a Pulse Rate Algorithm on the given training data. Then Test

Omar Laham 2 Oct 25, 2022
Fast image augmentation library and easy to use wrapper around other libraries. Documentation: https://albumentations.ai/docs/ Paper about library: https://www.mdpi.com/2078-2489/11/2/125

Albumentations Albumentations is a Python library for image augmentation. Image augmentation is used in deep learning and computer vision tasks to inc

11.4k Jan 09, 2023
Reporting and Visualization for Hazardous Events

Reporting and Visualization for Hazardous Events

Jv Kyle Eclarin 2 Oct 03, 2021
Keras implementation of the GNM model in paper ’Graph-Based Semi-Supervised Learning with Nonignorable Nonresponses‘

Graph-based joint model with Nonignorable Missingness (GNM) This is a Keras implementation of the GNM model in paper ’Graph-Based Semi-Supervised Lear

Fan Zhou 2 Apr 17, 2022
Google Brain - Ventilator Pressure Prediction

Google Brain - Ventilator Pressure Prediction https://www.kaggle.com/c/ventilator-pressure-prediction The ventilator data used in this competition was

Samuele Cucchi 1 Feb 11, 2022
Official repository for ABC-GAN

ABC-GAN The work represented in this repository is the result of a 14 week semesterthesis on photo-realistic image generation using generative adversa

IgorSusmelj 10 Jun 23, 2022
BC3407-Group-5-Project - BC3407 Group Project With Python

BC3407-Group-5-Project As the world struggles to contain the ever-changing varia

1 Jan 26, 2022
A Closer Look at Structured Pruning for Neural Network Compression

A Closer Look at Structured Pruning for Neural Network Compression Code used to reproduce experiments in https://arxiv.org/abs/1810.04622. To prune, w

Bayesian and Neural Systems Group 140 Dec 05, 2022
Utility code for use with PyXLL

pyxll-utils There is no need to use this package as of PyXLL 5. All features from this package are now provided by PyXLL. If you were using this packa

PyXLL 10 Dec 18, 2021
A way to store images in YAML.

YAMLImg A way to store images in YAML. I made this after seeing Roadcrosser's JSON-G because it was too inspiring to ignore this opportunity. Installa

5 Mar 14, 2022
TeachMyAgent is a testbed platform for Automatic Curriculum Learning methods in Deep RL.

TeachMyAgent: a Benchmark for Automatic Curriculum Learning in Deep RL Paper Website Documentation TeachMyAgent is a testbed platform for Automatic Cu

Flowers Team 51 Dec 25, 2022
IsoGCN code for ICLR2021

IsoGCN The official implementation of IsoGCN, presented in the ICLR2021 paper Isometric Transformation Invariant and Equivariant Graph Convolutional N

horiem 39 Nov 25, 2022
A computer vision pipeline to identify the "icons" in Christian paintings

Christian-Iconography A computer vision pipeline to identify the "icons" in Christian paintings. A bit about iconography. Iconography is related to id

Rishab Mudliar 3 Jul 30, 2022
Tweesent-back - Tweesent backend uses fastAPI as the web framework

TweeSent Backend Tweesent backend. This repo uses fastAPI as the web framework.

0 Mar 26, 2022
The lightweight PyTorch wrapper for high-performance AI research. Scale your models, not the boilerplate.

The lightweight PyTorch wrapper for high-performance AI research. Scale your models, not the boilerplate. Website • Key Features • How To Use • Docs •

Pytorch Lightning 21.1k Jan 08, 2023
Applicator Kit for Modo allow you to apply Apple ARKit Face Tracking data from your iPhone or iPad to your characters in Modo.

Applicator Kit for Modo Applicator Kit for Modo allow you to apply Apple ARKit Face Tracking data from your iPhone or iPad with a TrueDepth camera to

Andrew Buttigieg 3 Aug 24, 2021