Dynamical Wasserstein Barycenters for Time Series Modeling

Overview

Dynamical Wasserstein Barycenters for Time Series Modeling

This is the code related for the Dynamical Wasserstein Barycenter model published in Neurips 2021.

To run the code and replicate the results reported in our paper,

# usage: DynamicalWassersteinBarycenters.py dataSet dataFile debugFolder interpModel [--ParamTest PARAMTEST] [--lambda LAM] [--s S]

# Sample run on MSR data                                         
>> python DynamicalWassersteinBarycenters.py MSR_Batch ../Data/MSR_Data/subj090_1.mat ../debug/MSR/subj001_1.mat Wass 

# Sample run for parameter test
>> python DynamicalWassersteinBarycenters.py MSR_Batch ../Data/MSR_Data/subj090_1.mat ../debug/ParamTest/subj001_1.mat Wass --ParamTest 1 --lambda 100 --s 1.0

The interpMethod is either Wass` for the Wasserstein barycentric model or GMM`` for the linear interpolation model.

Simulated Data

The simulated data and experiment included in this supplement can be replicated using using the following commands.

# Generate 2 and 3 state simulated data                                         
>> python GenerateOptimizationExperimentData.py
>> python GenerateOptimizationExperimentData_3K.py

# usage: OptimizationExperiment.py FileIn Mode File
# Sample run for optimization experiment
>> python OptimizationExperiment.py ../data/SimulatedOptimizationData_2K/dim_5_5.mat/ WB ../debug/SimulatedData/dim_5_5_out.mat 

The Mode is either WB for Wasserstein-Bures geometry and Euc for Euclidean geometry using Cholesky decomposition parameterization.

Requirements

_libgcc_mutex=0.1=conda_forge
_openmp_mutex=4.5=1_llvm
_pytorch_select=0.2=gpu_0
blas=2.17=openblas
ca-certificates=2020.12.5=ha878542_0
certifi=2020.12.5=py38h578d9bd_1
cffi=1.14.4=py38h261ae71_0
cudatoolkit=8.0=3
cudnn=7.1.3=cuda8.0_0
cycler=0.10.0=py_2
freetype=2.10.4=h7ca028e_0
future=0.18.2=py38h578d9bd_3
immutables=0.15=py38h497a2fe_0
intel-openmp=2020.2=254
joblib=1.0.0=pyhd8ed1ab_0
jpeg=9d=h36c2ea0_0
kiwisolver=1.3.1=py38h82cb98a_0
lcms2=2.11=hcbb858e_1
ld_impl_linux-64=2.33.1=h53a641e_7
libblas=3.8.0=17_openblas
libcblas=3.8.0=17_openblas
libedit=3.1.20191231=h14c3975_1
libffi=3.3=he6710b0_2
libgcc-ng=9.3.0=h5dbcf3e_17
libgfortran-ng=7.3.0=hdf63c60_0
libgomp=9.3.0=h5dbcf3e_17
liblapack=3.8.0=17_openblas
liblapacke=3.8.0=17_openblas
libopenblas=0.3.10=pthreads_hb3c22a3_4
libpng=1.6.37=h21135ba_2
libstdcxx-ng=9.3.0=h6de172a_18
libtiff=4.1.0=h4f3a223_6
libwebp-base=1.1.0=h36c2ea0_3
llvm-openmp=11.0.0=hfc4b9b4_1
lz4-c=1.9.2=he1b5a44_3
matplotlib-base=3.3.3=py38h5c7f4ab_0
mkl=2020.4=h726a3e6_304
mkl-service=2.3.0=py38he904b0f_0
mkl_fft=1.3.0=py38h5c078b8_1
mkl_random=1.2.0=py38hc5bc63f_1
ncurses=6.2=he6710b0_1
ninja=1.10.2=py38hff7bd54_0
numpy=1.19.5=py38h18fd61f_1
numpy-base=1.18.5=py38h2f8d375_0
olefile=0.46=pyh9f0ad1d_1
openssl=1.1.1k=h7f98852_0
pillow=8.1.0=py38h357d4e7_1
pip=20.3.3=py38h06a4308_0
pot=0.7.0=py38h950e882_0
pycparser=2.20=py_2
pyparsing=2.4.7=pyh9f0ad1d_0
python=3.8.5=h7579374_1
python-dateutil=2.8.1=py_0
python_abi=3.8=1_cp38
pytorch=1.7.1=cpu_py38h36eccb8_1
readline=8.0=h7b6447c_0
scikit-learn=0.24.1=py38h658cfdd_0
scipy=1.5.2=py38h8c5af15_0
setuptools=51.1.2=py38h06a4308_4
six=1.15.0=py38h06a4308_0
sqlite=3.33.0=h62c20be_0
threadpoolctl=2.1.0=pyh5ca1d4c_0
tk=8.6.10=hbc83047_0
tornado=6.1=py38h497a2fe_1
wheel=0.36.2=pyhd3eb1b0_0
xz=5.2.5=h7b6447c_0
zlib=1.2.11=h7b6447c_3
zstd=1.4.5=h6597ccf_2
Code for Multiple Instance Active Learning for Object Detection, CVPR 2021

MI-AOD Language: 简体中文 | English Introduction This is the code for Multiple Instance Active Learning for Object Detection (The PDF is not available tem

Tianning Yuan 269 Dec 21, 2022
Pytorch implementation of BRECQ, ICLR 2021

BRECQ Pytorch implementation of BRECQ, ICLR 2021 @inproceedings{ li&gong2021brecq, title={BRECQ: Pushing the Limit of Post-Training Quantization by Bl

Yuhang Li 148 Dec 28, 2022
Sentiment analysis translations of the Bhagavad Gita

Sentiment and Semantic Analysis of Bhagavad Gita Translations It is well known that translations of songs and poems not only breaks rhythm and rhyming

Machine learning and Bayesian inference @ UNSW Sydney 3 Aug 01, 2022
This is the official PyTorch implementation of our paper: "Artistic Style Transfer with Internal-external Learning and Contrastive Learning".

Artistic Style Transfer with Internal-external Learning and Contrastive Learning This is the official PyTorch implementation of our paper: "Artistic S

51 Dec 20, 2022
The official implementation of CircleNet: Anchor-free Detection with Circle Representation, MICCAI 2030

CircleNet: Anchor-free Detection with Circle Representation The official implementation of CircleNet, MICCAI 2020 [PyTorch] [project page] [MICCAI pap

The Biomedical Data Representation and Learning Lab 45 Nov 18, 2022
Wanli Li and Tieyun Qian: Exploit a Multi-head Reference Graph for Semi-supervised Relation Extraction, IJCNN 2021

MRefG Wanli Li and Tieyun Qian: "Exploit a Multi-head Reference Graph for Semi-supervised Relation Extraction", IJCNN 2021 1. Requirements To reproduc

万理 5 Jul 26, 2022
Adversarial Framework for (non-) Parametric Image Stylisation Mosaics

Fully Adversarial Mosaics (FAMOS) Pytorch implementation of the paper "Copy the Old or Paint Anew? An Adversarial Framework for (non-) Parametric Imag

Zalando Research 120 Dec 24, 2022
Optical Character Recognition + Instance Segmentation for russian and english languages

Распознавание рукописного текста в школьных тетрадях Соревнование, проводимое в рамках олимпиады НТО, разработанное Сбером. Платформа ODS. Результаты

Gerasimov Maxim 21 Dec 19, 2022
Gradient representations in ReLU networks as similarity functions

Gradient representations in ReLU networks as similarity functions by Dániel Rácz and Bálint Daróczy. This repo contains the python code related to our

1 Oct 08, 2021
Classification of EEG data using Deep Learning

Graduation-Project Classification of EEG data using Deep Learning Epilepsy is the most common neurological disease in the world. Epilepsy occurs as a

Osman Alpaydın 5 Jun 24, 2022
[ICLR 2021] "Neural Architecture Search on ImageNet in Four GPU Hours: A Theoretically Inspired Perspective" by Wuyang Chen, Xinyu Gong, Zhangyang Wang

Neural Architecture Search on ImageNet in Four GPU Hours: A Theoretically Inspired Perspective [PDF] Wuyang Chen, Xinyu Gong, Zhangyang Wang In ICLR 2

VITA 156 Nov 28, 2022
A library for finding knowledge neurons in pretrained transformer models.

knowledge-neurons An open source repository replicating the 2021 paper Knowledge Neurons in Pretrained Transformers by Dai et al., and extending the t

EleutherAI 96 Dec 21, 2022
CCPD: a diverse and well-annotated dataset for license plate detection and recognition

CCPD (Chinese City Parking Dataset, ECCV) UPdate on 10/03/2019. CCPD Dataset is now updated. We are confident that images in subsets of CCPD is much m

detectRecog 1.8k Dec 30, 2022
Simple tools for logging and visualizing, loading and training

TNT TNT is a library providing powerful dataloading, logging and visualization utilities for Python. It is closely integrated with PyTorch and is desi

1.5k Jan 02, 2023
Generating Anime Images by Implementing Deep Convolutional Generative Adversarial Networks paper

AnimeGAN - Deep Convolutional Generative Adverserial Network PyTorch implementation of DCGAN introduced in the paper: Unsupervised Representation Lear

Rohit Kukreja 23 Jul 21, 2022
A tutorial on training a DarkNet YOLOv4 model for the CrowdHuman dataset

YOLOv4 CrowdHuman Tutorial This is a tutorial demonstrating how to train a YOLOv4 people detector using Darknet and the CrowdHuman dataset. Table of c

JK Jung 118 Nov 10, 2022
EvoJAX is a scalable, general purpose, hardware-accelerated neuroevolution toolkit

EvoJAX: Hardware-Accelerated Neuroevolution EvoJAX is a scalable, general purpose, hardware-accelerated neuroevolution toolkit. Built on top of the JA

Google 598 Jan 07, 2023
NFNets and Adaptive Gradient Clipping for SGD implemented in PyTorch

PyTorch implementation of Normalizer-Free Networks and SGD - Adaptive Gradient Clipping Paper: https://arxiv.org/abs/2102.06171.pdf Original code: htt

Vaibhav Balloli 320 Jan 02, 2023
WebUAV-3M: A Benchmark Unveiling the Power of Million-Scale Deep UAV Tracking

WebUAV-3M: A Benchmark Unveiling the Power of Million-Scale Deep UAV Tracking [Paper Link] Abstract In this work, we contribute a new million-scale Un

25 Jan 01, 2023
Code for the prototype tool in our paper "CoProtector: Protect Open-Source Code against Unauthorized Training Usage with Data Poisoning".

CoProtector Code for the prototype tool in our paper "CoProtector: Protect Open-Source Code against Unauthorized Training Usage with Data Poisoning".

Zhensu Sun 1 Oct 26, 2021