Weakly Supervised Dense Event Captioning in Videos, i.e. generating multiple sentence descriptions for a video in a weakly-supervised manner.

Overview

WSDEC

This is the official repo for our NeurIPS paper Weakly Supervised Dense Event Captioning in Videos.

Description

Repo directories

  • ./: global config files, training, evaluating scripts;
  • ./data: data dictionary;
  • ./model: our final models used to reproduce the results;
  • ./runs: the default output dictionary used to store our trained model and result files;
  • ./scripts: helper scripts;
  • ./third_party: third party dependency include the official evaluation scripts;
  • ./utils: helper functions;
  • ./train_script: all training scripts;
  • ./eval_script: all evalulating scripts.

Dependency

  • Python 2.7
  • CUDA 9.0(note: you will encounter a bug saying segmentation fault(core dump) if you run our code with CUDA 8.0)
    • But it seems that the bug still exists. See issue
  • [Pytorch 0.3.1](note: 0.3.1 is not compatible with newer version)
  • numpy, hdf5 and other necessary packages(no special requirement)

Usage for reproduction

Before we start

Before the training and testing, we should make sure the data, third party data are prepared, here is the one-by-one steps to make everything prepared.

1. Clone our repo and submodules

git clone --recursive https://github.com/XgDuan/WSDEC

2. Download all the data

  • Download the official C3D features, you can either download the data from the website or from our onedrive cloud.

    • Download from the official website; (Note, after you download the C3D features, you can either place it in the data folder and rename it as anet_v1.3.c3d.hdf5, or create a soft link in the data dictionary as ln -s YOURC3DFeature data/anet_v1.3.c3d.hdf5)
  • Download the dense video captioning data from the official website; (Similar to the C3D feature, you are supposed to place the download data in the data folder and rename it as densecap)

  • Download the data for the official evaluation scripts densevid_eval;

    • run the command sh download.sh scripts in the folder PREFIX/WSDEC/third_party/densevid_eval;
  • [Good News]: we write a shell script for you to download the data, just run the following command:

    cd data
    sh download.sh
    

3. Generate the dictionary for the caption model

python scripts/caption_preprocess.py

Training

There are two steps for model training: pretrain a not so bad caption model; and the second step, train the final/baseline model.

Our pretrained captioning model is trained.

python train_script/train_cg_pretrain.py

train our final model

python train_script/train_final.py --checkpoint_cg YOUR_PRETRAINED_CAPTION_MODEL.ckp --alias MODEL_NAME

train baselines

  1. train the baseline model without classification loss.
python train_script/train_baseline_regressor.py --checkpoint_cg YOUR_PRETRAINED_CAPTION_MODEL.ckp --alias MODEL_NAME
  1. train the baseline model without regression branch.
python train_script/train_final.py --checkpoint_cg YOUR_PRETRAINED_CAPTION_MODEL.ckp --regressor_scale 0 --alias MODEL_NAME

About the arguments

All the arguments we use can be found in the corresponding training scripts. You can also use your own argumnets if you like to do so. But please mind, some arguments are discarded(This is our own reimplementation of our paper, the first version codes are too dirty that no one would like to use it.)

Testing

Testing is easier than training. Firstly, in the process of training, our scripts will call the densevid_eval in a subprocess every time after we run the eval function. From these results, you can have a general grasp about the final performance by just have a look at the eval_results.txt scripts. Secondly, after some epochs, you can run the evaluation scripts:

  1. evaluate the full model or no_regression model:
python eval_script/evaluate.py --checkpoint YOUR_TRAINED_MODEL.ckp
  1. evaluate the no_classification model:
python eval_script/evaluate_baseline_regressor.py --checkpoint YOUR_TRAINED_MODEL.ckp
  1. evaluate the pretrained model with random temporal segment:
python eval_script/evaluate_pretrain.py --checkpoint YOUR_PRETRAIN_CAPTION_MODEL.ckp

Other usages

Besides reproduce our work, there are at least two interesting things you can do with our codes.

Train a supervised sentence localization model

To know what is sentence localization, you can have a look at our paper ABLR. Note that our work at a matter of fact provides an unsupervised solution towards sentence localization, we introduce the usage for the supervised model here. We have written the trainer, you can just run the following command and have a cup of coffee:

python train_script/train_sl.py

Train a supervised video event caption generation model

If you have read our paper, you would find that event captioning is the dual task of the aforementioned sentence localization task. To train such a model, just run the following command:

python train_script/train_cg.py

BUGS

You may encounter a cuda internal bug that says Segmentation fault(core dumped) during training if you are using cuda 8.0. If such things happen, try upgrading your cuda to 9.0.

other

We will add more description about how to use our code. Please feel free to contact us if you have any questions or suggestions.

Trained model and results

Links for our trained model

You can download our pretrained model for evaluation or further usage from our onedrive, which includes a pretrained caption generator(cg_pretrain.ckp), a baseline model without classification loss(baseline_noclass.ckp), a baseline model without regression branch(baseline_noregress.ckp), and our final model(final_model.ckp).

Cite the paper and give us star ⭐️

If you find our paper or code useful, please cite our paper using the following bibtex:

@incollection{NIPS2018_7569,
title = {Weakly Supervised Dense Event Captioning in Videos},
author = {Duan, Xuguang and Huang, Wenbing and Gan, Chuang and Wang, Jingdong and Zhu, Wenwu and Huang, Junzhou},
booktitle = {Advances in Neural Information Processing Systems 31},
editor = {S. Bengio and H. Wallach and H. Larochelle and K. Grauman and N. Cesa-Bianchi and R. Garnett},
pages = {3062--3072},
year = {2018},
publisher = {Curran Associates, Inc.},
url = {http://papers.nips.cc/paper/7569-weakly-supervised-dense-event-captioning-in-videos.pdf}
}
Owner
Melon(Xuguang Duan)
Lick the screen
Melon(Xuguang Duan)
Object Detection and Multi-Object Tracking

Object Detection and Multi-Object Tracking

Bobby Chen 1.6k Jan 04, 2023
Tensorflow implementation of Swin Transformer model.

Swin Transformer (Tensorflow) Tensorflow reimplementation of Swin Transformer model. Based on Official Pytorch implementation. Requirements tensorflow

167 Jan 08, 2023
SegNet model implemented using keras framework

keras-segnet Implementation of SegNet-like architecture using keras. Current version doesn't support index transferring proposed in SegNet article, so

185 Aug 30, 2022
QRec: A Python Framework for quick implementation of recommender systems (TensorFlow Based)

Introduction QRec is a Python framework for recommender systems (Supported by Python 3.7.4 and Tensorflow 1.14+) in which a number of influential and

Yu 1.4k Dec 30, 2022
Official implementation of the RAVE model: a Realtime Audio Variational autoEncoder

Official implementation of the RAVE model: a Realtime Audio Variational autoEncoder

Antoine Caillon 589 Jan 02, 2023
Tensorflow2.0 🍎🍊 is delicious, just eat it! 😋😋

How to eat TensorFlow2 in 30 days ? 🔥 🔥 Click here for Chinese Version(中文版) 《10天吃掉那只pyspark》 🚀 github项目地址: https://github.com/lyhue1991/eat_pyspark

lyhue1991 9.7k Jan 01, 2023
Repository for the paper "Online Domain Adaptation for Occupancy Mapping", RSS 2020

RSS 2020 - Online Domain Adaptation for Occupancy Mapping Repository for the paper "Online Domain Adaptation for Occupancy Mapping", Robotics: Science

Anthony 26 Sep 22, 2022
Simultaneous NMT/MMT framework in PyTorch

This repository includes the codes, the experiment configurations and the scripts to prepare/download data for the Simultaneous Machine Translation wi

<a href=[email protected]"> 37 Sep 29, 2022
The Official PyTorch Implementation of "VAEBM: A Symbiosis between Variational Autoencoders and Energy-based Models" (ICLR 2021 spotlight paper)

Official PyTorch implementation of "VAEBM: A Symbiosis between Variational Autoencoders and Energy-based Models" (ICLR 2021 Spotlight Paper) Zhisheng

NVIDIA Research Projects 45 Dec 26, 2022
Vit-ImageClassification - Pytorch ViT for Image classification on the CIFAR10 dataset

Vit-ImageClassification Introduction This project uses ViT to perform image clas

Kaicheng Yang 4 Jun 01, 2022
SparseML is a libraries for applying sparsification recipes to neural networks with a few lines of code, enabling faster and smaller models

SparseML is a toolkit that includes APIs, CLIs, scripts and libraries that apply state-of-the-art sparsification algorithms such as pruning and quantization to any neural network. General, recipe-dri

Neural Magic 1.5k Dec 30, 2022
Pytorch for Segmentation

Pytorch for Semantic Segmentation This repo has been deprecated currently and I will not maintain it. Meanwhile, I strongly recommend you can refer to

ycszen 411 Nov 22, 2022
Keras implementation of the GNM model in paper ’Graph-Based Semi-Supervised Learning with Nonignorable Nonresponses‘

Graph-based joint model with Nonignorable Missingness (GNM) This is a Keras implementation of the GNM model in paper ’Graph-Based Semi-Supervised Lear

Fan Zhou 2 Apr 17, 2022
Estimation of human density in a closed space using deep learning.

Siemens HOLLZOF challenge - Human Density Estimation Add project description here. Installing Dependencies: Install Python3 either system-wide, user-w

3 Aug 08, 2021
Spatial color quantization in Rust

rscolorq Rust port of Derrick Coetzee's scolorq, based on the 1998 paper "On spatial quantization of color images" by Jan Puzicha, Markus Held, Jens K

Collyn O'Kane 37 Dec 22, 2022
Image Classification - A research on image classification and auto insurance claim prediction, a systematic experiments on modeling techniques and approaches

A research on image classification and auto insurance claim prediction, a systematic experiments on modeling techniques and approaches

0 Jan 23, 2022
An open source bike computer based on Raspberry Pi Zero (W, WH) with GPS and ANT+. Including offline map and navigation.

Pi Zero Bikecomputer An open-source bike computer based on Raspberry Pi Zero (W, WH) with GPS and ANT+ https://github.com/hishizuka/pizero_bikecompute

hishizuka 264 Jan 02, 2023
LegoDNN: a block-grained scaling tool for mobile vision systems

Table of contents 1 Introduction 1.1 Major features 1.2 Architecture 2 Code and Installation 2.1 Code 2.2 Installation 3 Repository of DNNs in vision

41 Dec 24, 2022
Apollo optimizer in tensorflow

Apollo Optimizer in Tensorflow 2.x Notes: Warmup is important with Apollo optimizer, so be sure to pass in a learning rate schedule vs. a constant lea

Evan Walters 1 Nov 09, 2021
Bayesian Generative Adversarial Networks in Tensorflow

Bayesian Generative Adversarial Networks in Tensorflow This repository contains the Tensorflow implementation of the Bayesian GAN by Yunus Saatchi and

Andrew Gordon Wilson 1k Nov 29, 2022