Simple image captioning model - CLIP prefix captioning.

Overview

CLIP prefix captioning.


Inference Notebook:

🥳 New: 🥳 Integrated to Huggingface Spaces with Gradio. See demo: Hugging Face Spaces

🥳 New: 🥳 Run it in the browser using replicate.ai UI

Description

Image captioning is a complicated task, where usually a pretrained detection network is used, requires additional supervision in the form of object annotation. The features of the detected objects are then fed to an additional network that is trained to output the correct caption. We present a new approach that does not requires additional information (i.e. requires only images and captions), thus can be applied to any data. In addition, our model's training time is much faster than similar methods while achieving close to state-of-the-art results, even for the Conceptual Captions dataset contains over 3M images.

In our work, we use the CLIP model, which was already trained over an extremely large number of images, thus is capable of generating semantic encodings for arbitrary images without additional supervision. To produce meaningful sentences we fine-tune a pretrained language model, which has been proven to be successful for other natural language tasks. The key idea is to use the CLIP encoding as a prefix to the textual captions by employing a simple Multi-Layer Perceptron (MLP) over the raw encoding, and then fine-tune our language model to generate a valid caption.

COCO Examples

A couple of people standing next to an elephant. A wooden table sitting in front of a window. A bunch of bananas sitting on top of a table.
A woman holding a plate with a piece of cake in front of her face. A wooden table topped with lots of wooden utensils. A red motorcycle parked on top of a dirt field.

Conceptual Captions Examples

3D render of a man holding a globe. Students enjoing the cherry blossoms Green leaf of lettuce on a white plate.
The hotel and casino on the waterfront. The triangle is a symbol of the soul. Cartoon boy in the bath.

Inference Notebooks

To help visualize the results we provide a Colab notebook found in notebooks/clip_prefix_captioning_inference.ipynb.
The notebook will download the pretrained models and run inference on a sample images or on images of your choosing. It is recommended to run this in Google Colab. Both COCO and Conceptual Captions pretrained models are available.

Inference GUI

Run it in the browser using replicate.ai UI.

COCO training

Clone, create environment and install dependencies:

git clone https://github.com/rmokady/CLIP_prefix_caption && cd CLIP_prefix_caption
conda env create -f environment.yml
conda activate clip_prefix_caption

Download train_captions to data/coco/annotations.

Download training images and validation images and unzip (We use Karpathy et el. split).

Extract CLIP features using (output is data/coco/oscar_split_train.pkl):

python parse_coco.py

Train:

python train.py --data ./data/coco/oscar_split_train.pkl --out_dir ./coco_train/

Qualitative results

COCO dataset

Method [email protected] [email protected] [email protected] [email protected] METEOR ROUGE-L CIDEr SPICE
Oscar* 75.59 60.09 46.89 36.58 30.40 58.56 124.12 23.17
Ours 74.12 57.40 43.11 32.15 27.10 55.02 108.35 20.12

* uses additional object annotations for training.

Conceptual Captions dataset

Method ROUGE-L CIDEr SPICE
VLP 24.35 77.57 16.59
Ours 26.71 87.26 18.5

Acknowledgments

This project was created by Ron Mokady and Amir Hertz for the Advanced-NLP course by Omer Levy @ TAU. This repository is heavily based on CLIP and Hugging-faces repositories. For training we used the data of COCO dataset and Conceptual Captions. The project was also inspired from this paper.

Contact

For any inquiry please contact us at our email addresses: [email protected] or [email protected].

Pointer-generator - Code for the ACL 2017 paper Get To The Point: Summarization with Pointer-Generator Networks

Note: this code is no longer actively maintained. However, feel free to use the Issues section to discuss the code with other users. Some users have u

Abi See 2.1k Jan 04, 2023
Machine Learning automation and tracking

The Open-Source MLOps Orchestration Framework MLRun is an open-source MLOps framework that offers an integrative approach to managing your machine-lea

873 Jan 04, 2023
Use of Attention Gates in a Convolutional Neural Network / Medical Image Classification and Segmentation

Attention Gated Networks (Image Classification & Segmentation) Pytorch implementation of attention gates used in U-Net and VGG-16 models. The framewor

Ozan Oktay 1.6k Dec 30, 2022
Chainer Implementation of Semantic Segmentation using Adversarial Networks

Semantic Segmentation using Adversarial Networks Requirements Chainer (1.23.0) Differences Use of FCN-VGG16 instead of Dilated8 as Segmentor. Caution

Taiki Oyama 99 Jun 28, 2022
CCAFNet: Crossflow and Cross-scale Adaptive Fusion Network for Detecting Salient Objects in RGB-D Images

Code and result about CCAFNet(IEEE TMM) 'CCAFNet: Crossflow and Cross-scale Adaptive Fusion Network for Detecting Salient Objects in RGB-D Images' IEE

zyrant丶 14 Dec 29, 2021
[CVPR 2021] "Multimodal Motion Prediction with Stacked Transformers": official code implementation and project page.

mmTransformer Introduction This repo is official implementation for mmTransformer in pytorch. Currently, the core code of mmTransformer is implemented

DeciForce: Crossroads of Machine Perception and Autonomy 232 Dec 31, 2022
CARMS: Categorical-Antithetic-REINFORCE Multi-Sample Gradient Estimator

CARMS: Categorical-Antithetic-REINFORCE Multi-Sample Gradient Estimator This is the official code repository for NeurIPS 2021 paper: CARMS: Categorica

Alek Dimitriev 1 Jul 09, 2022
Trafffic prediction analysis using hybrid models - Machine Learning

Hybrid Machine learning Model Clone the Repository Create a new Directory as assests and download the model from the below link Model Link To Start th

1 Feb 08, 2022
Joint learning of images and text via maximization of mutual information

mutual_info_img_txt Joint learning of images and text via maximization of mutual information. This repository incorporates the algorithms presented in

Ruizhi Liao 10 Dec 22, 2022
基于PaddleOCR搭建的OCR server... 离线部署用

开头说明 DangoOCR 是基于大家的 CPU处理器 来运行的,CPU处理器 的好坏会直接影响其速度, 但不会影响识别的精度 ,目前此版本识别速度可能在 0.5-3秒之间,具体取决于大家机器的配置,可以的话尽量不要在运行时开其他太多东西。需要配合团子翻译器 Ver3.6 及其以上的版本才可以使用!

胖次团子 131 Dec 25, 2022
The Unreasonable Effectiveness of Random Pruning: Return of the Most Naive Baseline for Sparse Training

[ICLR 2022] The Unreasonable Effectiveness of Random Pruning: Return of the Most Naive Baseline for Sparse Training The Unreasonable Effectiveness of

VITA 44 Dec 23, 2022
MaskTrackRCNN for video instance segmentation based on mmdetection

MaskTrackRCNN for video instance segmentation Introduction This repo serves as the official code release of the MaskTrackRCNN model for video instance

411 Jan 05, 2023
A Runtime method overload decorator which should behave like a compiled language

strongtyping-pyoverload A Runtime method overload decorator which should behave like a compiled language there is a override decorator from typing whi

20 Oct 31, 2022
PyTorch implementations of deep reinforcement learning algorithms and environments

Deep Reinforcement Learning Algorithms with PyTorch This repository contains PyTorch implementations of deep reinforcement learning algorithms and env

Petros Christodoulou 4.7k Jan 04, 2023
Pytorch implementation of Feature Pyramid Network (FPN) for Object Detection

fpn.pytorch Pytorch implementation of Feature Pyramid Network (FPN) for Object Detection Introduction This project inherits the property of our pytorc

Jianwei Yang 912 Dec 21, 2022
Bayesian Neural Networks in PyTorch

We present the new scheme to compute Monte Carlo estimator in Bayesian VI settings with almost no memory cost in GPU, regardles of the number of sampl

Jurijs Nazarovs 7 May 03, 2022
Python3 / PyTorch implementation of the following paper: Fine-grained Semantics-aware Representation Enhancement for Self-supervisedMonocular Depth Estimation. ICCV 2021 (oral)

FSRE-Depth This is a Python3 / PyTorch implementation of FSRE-Depth, as described in the following paper: Fine-grained Semantics-aware Representation

77 Dec 28, 2022
A Kernel fuzzer focusing on race bugs

Razzer: Finding kernel race bugs through fuzzing Environment setup $ source scripts/envsetup.sh scripts/envsetup.sh sets up necessary environment var

Systems and Software Security Lab at Seoul National University (SNU) 328 Dec 26, 2022
A time series processing library

Timeseria Timeseria is a time series processing library which aims at making it easy to handle time series data and to build statistical and machine l

Stefano Alberto Russo 11 Aug 08, 2022
百度2021年语言与智能技术竞赛机器阅读理解Pytorch版baseline

项目说明: 百度2021年语言与智能技术竞赛机器阅读理解Pytorch版baseline 比赛链接:https://aistudio.baidu.com/aistudio/competition/detail/66?isFromLuge=true 官方的baseline版本是基于paddlepadd

周俊贤 54 Nov 23, 2022