A python tutorial on bayesian modeling techniques (PyMC3)

Overview

Bayesian Modelling in Python

Bayesian Modelling in Python

Welcome to "Bayesian Modelling in Python" - a tutorial for those interested in learning how to apply bayesian modelling techniques in python (PYMC3). This tutorial doesn't aim to be a bayesian statistics tutorial - but rather a programming cookbook for those who understand the fundamental of bayesian statistics and want to learn how to build bayesian models using python. The tutorial sections and topics can be seen below.

Contents

  • Introduction

    • Motivation for learning bayesian statistics
    • Loading and parsing Hangout chat data
  • Section 1: Estimating model parameters

    • Frequentist technique for estimating parameters of a poisson model (Optimization routine)
    • Bayesian technique for estimating parameters of a poisson model (MCMC)
  • Section 2: Model checking & comparison

    • Posterior predictive check
    • Bayes factor
  • Section 3: Hierarchal modeling

    • Model pooling (separate models)
    • Partial pooling (hierarchal models)
    • Shrinkage effect of partial pooling
  • Section 4: Bayesian regression

    • Bayesian fixed effects poisson regression
    • Bayesian mixed effects poisson regression
  • Section 5: Bayesian survival analysis

    • Survival model theory
    • Cox proportional hazard model
    • Aalen's additive hazard model
  • Section 6: Bayesian A/B tests

    • Bayesian test of proportions
    • Bayesian t-test (BEST)

Contributions

  • All contributions are more than welcome. They can be minor (spelling, better explanations, improved code/charts) or major (contribute a full section).
  • If you would like to contribute, please create a pull request in GitHub. Happy to discuss ideas before you begin working on the addition.
  • I would especially welcome any contributions that address: survival analysis, mixture models, time series models or A/B experiments.
  • If you're not familiar with GitHub - please email me at [email protected].

Motivation for learning bayesian statistics

Statistics is a topic that never resonated with me throughout university. The frequentist techniques that we were taught (p-values etc) felt contrived and ultimately I turned my back on statistics as a topic that I wasn't interested in.

That was until I stumbled upon Bayesian statistics - a branch to statistics quite different from the traditional frequentist statistics that most universities teach. I was inspired by a number of different publications, blogs & videos that I would highly recommend any newbies to bayesian stats to begin with. They include:

I created this tutorial in the hope that others find it useful and it helps them learn Bayesian techniques just like the above resources helped me. I hope you find it useful and I'd welcome any corrections/comments/contributions from the community.

Note

This tutorial is actively being worked on. I'm keen to get feedback and welcome ideas/contributions.

Owner
Mark Regan
PM @Google Assistant
Mark Regan
Parameter-ensemble-differential-evolution - Shows how to do parameter ensembling using differential evolution.

Ensembling parameters with differential evolution This repository shows how to ensemble parameters of two trained neural networks using differential e

Sayak Paul 9 May 04, 2022
TEDSummary is a speech summary corpus. It includes TED talks subtitle (Document), Title-Detail (Summary), speaker name (Meta info), MP4 URL, and utterance id

TEDSummary is a speech summary corpus. It includes TED talks subtitle (Document), Title-Detail (Summary), speaker name (Meta info), MP4 URL

3 Dec 26, 2022
Pytorch-diffusion - A basic PyTorch implementation of 'Denoising Diffusion Probabilistic Models'

PyTorch implementation of 'Denoising Diffusion Probabilistic Models' This reposi

Arthur Juliani 76 Jan 07, 2023
A project to make Amazon Echo respond to sign language using your webcam

Making Alexa respond to Sign Language using Tensorflow.js Try the live demo Read the Blog Post on Tensorflow's Blog Coming Soon Watch the video This p

Abhishek Singh 444 Jan 03, 2023
ManipulaTHOR, a framework that facilitates visual manipulation of objects using a robotic arm

ManipulaTHOR: A Framework for Visual Object Manipulation Kiana Ehsani, Winson Han, Alvaro Herrasti, Eli VanderBilt, Luca Weihs, Eric Kolve, Aniruddha

AI2 65 Dec 30, 2022
GPU-Accelerated Deep Learning Library in Python

Hebel GPU-Accelerated Deep Learning Library in Python Hebel is a library for deep learning with neural networks in Python using GPU acceleration with

Hannes Bretschneider 1.2k Dec 21, 2022
A Python parser that takes the content of a text file and then reads it into variables.

Text-File-Parser A Python parser that takes the content of a text file and then reads into variables. Input.text File 1. What is your ***? 1. 18 -

Kelvin 0 Jul 26, 2021
Ranking Models in Unlabeled New Environments (iccv21)

Ranking Models in Unlabeled New Environments Prerequisites This code uses the following libraries Python 3.7 NumPy PyTorch 1.7.0 + torchivision 0.8.1

14 Dec 17, 2021
Code for our ICASSP 2021 paper: SA-Net: Shuffle Attention for Deep Convolutional Neural Networks

SA-Net: Shuffle Attention for Deep Convolutional Neural Networks (paper) By Qing-Long Zhang and Yu-Bin Yang [State Key Laboratory for Novel Software T

Qing-Long Zhang 199 Jan 08, 2023
I tried to apply the CAM algorithm to YOLOv4 and it worked.

YOLOV4:You Only Look Once目标检测模型在pytorch当中的实现 2021年2月7日更新: 加入letterbox_image的选项,关闭letterbox_image后网络的map得到大幅度提升。 目录 性能情况 Performance 实现的内容 Achievement

55 Dec 05, 2022
Code for testing convergence rates of Lipschitz learning on graphs

📈 LipschitzLearningRates The code in this repository reproduces the experimental results on convergence rates for k-nearest neighbor graph infinity L

2 Dec 20, 2021
Implementation of SwinTransformerV2 in TensorFlow.

SwinTransformerV2-TensorFlow A TensorFlow implementation of SwinTransformerV2 by Microsoft Research Asia, based on their official implementation of Sw

Phan Nguyen 2 May 30, 2022
“袋鼯麻麻——智能购物平台”能够精准地定位识别每一个商品

“袋鼯麻麻——智能购物平台”能够精准地定位识别每一个商品,并且能够返回完整地购物清单及顾客应付的实际商品总价格,极大地降低零售行业实际运营过程中巨大的人力成本,提升零售行业无人化、自动化、智能化水平。

thomas-yanxin 192 Jan 05, 2023
PointRCNN: 3D Object Proposal Generation and Detection from Point Cloud, CVPR 2019.

PointRCNN PointRCNN: 3D Object Proposal Generation and Detection from Point Cloud Code release for the paper PointRCNN:3D Object Proposal Generation a

Shaoshuai Shi 1.5k Dec 27, 2022
Joint deep network for feature line detection and description

SOLD² - Self-supervised Occlusion-aware Line Description and Detection This repository contains the implementation of the paper: SOLD² : Self-supervis

Computer Vision and Geometry Lab 427 Dec 27, 2022
Few-Shot Object Detection via Association and DIscrimination

Few-Shot Object Detection via Association and DIscrimination Code release of our NeurIPS 2021 paper: Few-Shot Object Detection via Association and DIs

Cao Yuhang 49 Dec 18, 2022
Artificial Intelligence playing minesweeper 🤖

AI playing Minesweeper ✨ Minesweeper is a single-player puzzle video game. The objective of the game is to clear a rectangular board containing hidden

Vaibhaw 8 Oct 17, 2022
A Tensorflow implementation of CapsNet based on Geoffrey Hinton's paper Dynamic Routing Between Capsules

CapsNet-Tensorflow A Tensorflow implementation of CapsNet based on Geoffrey Hinton's paper Dynamic Routing Between Capsules Notes: The current version

Huadong Liao 3.8k Dec 29, 2022
Code for "Learning Graph Cellular Automata"

Learning Graph Cellular Automata This code implements the experiments from the NeurIPS 2021 paper: "Learning Graph Cellular Automata" Daniele Grattaro

Daniele Grattarola 37 Oct 26, 2022
LERP : Label-dependent and event-guided interpretable disease risk prediction using EHRs

LERP : Label-dependent and event-guided interpretable disease risk prediction using EHRs This is the code for the LERP. Dataset The dataset used is MI

5 Jun 18, 2022