Code for paper Multitask-Finetuning of Zero-shot Vision-Language Models

Overview

Downloading our datasets

Dataset structure

  • Each dataset may have several subdatasets (most of them only have one)
|
   
   
    
    
    |dataset/
        -|
    
    
     
     
            -|
     
     
      
      
            -|
      
      
       
       
        -|
       
       
         ... |pickled/ -|tensor_dict.pt 
       
      
      
     
     
    
    
   
   
  • The pickle file tensor_dict.pt has the following format:
{
    'subdataset_1':{
        'label_1':{
            'image_tensors':np.array((N,3,224,224)), # N: image number
            'input_ids':np.array(S), # S: token length of the filled template text
            'attention_masks':np.array(S),
            'template_input_ids':np.array(S_), # S_: token length of the un-filled template text
            'template_attention_masks':np.array(S_),
        },
        'label_2':{
            ...
        }
    },
    ...
}
  • ABO dataset contains an additional label_to_text.json file, which provides text template for each subdataset and label.

A list of available datasets and subdatasets

Dataset dataset name (-i) subdataset name (-d)
Clevr Counting ClevrCounting counting
Amazon Berkeley Objects (ABO) ABO material,color
Caltech-UCSD Birds 200 (CUB) CUB classification
Fungi Fungi classification
Mini-imagenet mini classification

Training with provided datasets

run.sh provided example code for performing training and meta-testing on our datasets.

Output format

Each model checkpoint dir contains two files:

  • step1.ckpt: model checkpoint after training phase
  • dev_test_results.json: scores on each task configuration on dev and test set during meta-testing

Loading checkpoint

  • Here is an example snippet for loading step1.ckpt from multitask-finetuning/classical-finetuning/zeroshot models:
/step1.ckpt")">
    model = MultitaskFinetuneCLIP()
    model = model.load_from_checkpoint(checkpoint_path="
    
    
     
     /step1.ckpt")

    
    
  • Here is an example snippet for loading step1.ckpt from fomaml models:
/step1.ckpt"))">
    model = LightningCLIP()
    model = l2l.algorithms.MAML(model, lr=1e-5 first_order=True)
    model.load_state_dict(torch.load("
    
    
     
     /step1.ckpt"))

    
    

Training with custom datasets

preprocess dataset

  • put your new dataset in the same format as provided dataset into data/
  • Specify template_function or the path to label_to_text json file (an example file can be found in /data/ABO/label_to_text.json) at line 350 and 355 in data.py
  • preprocess.sh provides an example of running data.py to create pickle file for your new dataset
  • add your dataset into construct_dataset(): line 77 in train.py and line 80 in train_MAML.py

train

  • modify run.sh to train and meta-test on your own dataset
  • refer to train.py and train_MAML.py for default and tuning hyperparameters for each algorithm

Citation

Owner
Zhenhailong Wang
MSCS at UIUC, Research Assistant at BLENDER lab advised by Prof. Heng Ji
Zhenhailong Wang
Converts python code into c++ by using OpenAI CODEX.

🦾 codex_py2cpp 🤖 OpenAI Codex Python to C++ Code Generator Your Python Code is too slow? 🐌 You want to speed it up but forgot how to code in C++? ⌨

Alexander 423 Jan 01, 2023
Course project of [email protected]

NaiveMT Prepare Clone this repository git clone [email protected]:Poeroz/NaiveMT.git

Poeroz 2 Apr 24, 2022
Unsupervised text tokenizer focused on computational efficiency

YouTokenToMe YouTokenToMe is an unsupervised text tokenizer focused on computational efficiency. It currently implements fast Byte Pair Encoding (BPE)

VK.com 847 Dec 19, 2022
Code to reprudece NeurIPS paper: Accelerated Sparse Neural Training: A Provable and Efficient Method to Find N:M Transposable Masks

Accelerated Sparse Neural Training: A Provable and Efficient Method to FindN:M Transposable Masks Recently, researchers proposed pruning deep neural n

itay hubara 4 Feb 23, 2022
SimCTG - A Contrastive Framework for Neural Text Generation

A Contrastive Framework for Neural Text Generation Authors: Yixuan Su, Tian Lan,

Yixuan Su 345 Jan 03, 2023
100+ Chinese Word Vectors 上百种预训练中文词向量

Chinese Word Vectors 中文词向量 中文 This project provides 100+ Chinese Word Vectors (embeddings) trained with different representations (dense and sparse),

embedding 10.4k Jan 09, 2023
Implementation of TF-IDF algorithm to find documents similarity with cosine similarity

NLP learning Trying to learn NLP to use in my projects! Table of Contents About The Project Built With Getting Started Requirements Run Usage License

Faraz Farangizadeh 3 Aug 25, 2022
Easy, fast, effective, and automatic g-code compression!

Getting to the meat of g-code. Easy, fast, effective, and automatic g-code compression! MeatPack nearly doubles the effective data rate of a standard

Scott Mudge 97 Nov 21, 2022
PyJPBoatRace: Python-based Japanese boatrace tools 🚤

pyjpboatrace :speedboat: provides you with useful tools for data analysis and auto-betting for boatrace.

5 Oct 29, 2022
Lattice methods in TensorFlow

TensorFlow Lattice TensorFlow Lattice is a library that implements constrained and interpretable lattice based models. It is an implementation of Mono

504 Dec 20, 2022
Learning General Purpose Distributed Sentence Representations via Large Scale Multi-task Learning

GenSen Learning General Purpose Distributed Sentence Representations via Large Scale Multi-task Learning Sandeep Subramanian, Adam Trischler, Yoshua B

Maluuba Inc. 309 Oct 19, 2022
Checking spelling of form elements

Checking spelling of form elements. You can check the source files of external workflows/reports and configuration files

СКБ Контур (команда 1с) 15 Sep 12, 2022
The Classical Language Toolkit

Notice: This Git branch (dev) contains the CLTK's upcoming major release (v. 1.0.0). See https://github.com/cltk/cltk/tree/master and https://docs.clt

Classical Language Toolkit 754 Jan 09, 2023
Source code of paper "BP-Transformer: Modelling Long-Range Context via Binary Partitioning"

BP-Transformer This repo contains the code for our paper BP-Transformer: Modeling Long-Range Context via Binary Partition Zihao Ye, Qipeng Guo, Quan G

Zihao Ye 119 Nov 14, 2022
An attempt to map the areas with active conflict in Ukraine using open source twitter data.

Live Action Map (LAM) An attempt to use open source data on Twitter to map areas with active conflict. Right now it is used for the Ukraine-Russia con

Kinshuk Dua 171 Nov 21, 2022
Code for EMNLP20 paper: "ProphetNet: Predicting Future N-gram for Sequence-to-Sequence Pre-training"

ProphetNet-X This repo provides the code for reproducing the experiments in ProphetNet. In the paper, we propose a new pre-trained language model call

Microsoft 394 Dec 17, 2022
Official codebase for Can Wikipedia Help Offline Reinforcement Learning?

Official codebase for Can Wikipedia Help Offline Reinforcement Learning?

Machel Reid 82 Dec 19, 2022
Materials (slides, code, assignments) for the NYU class I teach on NLP and ML Systems (Master of Engineering).

FREE_7773 Repo containing material for the NYU class (Master of Engineering) I teach on NLP, ML Sys etc. For context on what the class is trying to ac

Jacopo Tagliabue 90 Dec 19, 2022
A library that integrates huggingface transformers with the world of fastai, giving fastai devs everything they need to train, evaluate, and deploy transformer specific models.

blurr A library that integrates huggingface transformers with version 2 of the fastai framework Install You can now pip install blurr via pip install

ohmeow 253 Dec 31, 2022