Package for controllable summarization

Overview

summarizers

PyPI version GitHub

  • summarizers is package for controllable summarization based CTRLsum.
  • currently, we only supports English. It doesn't work in other languages.

Installation

pip install summarizers

Usage

1. Create Summarizers

  • First at all, create summarizers obejct to summarize your own article.
>>> from summarizers import Summarizers
>>> summ = Summarizers()
  • You can select type of source article between [normal, paper, patent].
  • If you don't input any parameter, default type is normal.
>>> from summarizers import Summarizers
>>> summ = Summarizers('normal')  # <-- default.
>>> summ = Summarizers('paper')
>>> summ = Summarizers('patent')
  • If you want GPU acceleration, set param device='cuda'.
>>> from summarizers import Summarizers
>>> summ = Summarizers('normal', device='cuda')

2. Basic Summarization

  • If you inputted source article, basic summariztion is conducted.
>>> contents = """
Tunip is the Octonauts' head cook and gardener. 
He is a Vegimal, a half-animal, half-vegetable creature capable of breathing on land as well as underwater. 
Tunip is very childish and innocent, always wanting to help the Octonauts in any way he can. 
He is the smallest main character in the Octonauts crew.
"""
>>> summ(contents)
'Tunip is a Vegimal, a half-animal, half-vegetable creature'

3. Query focused Summarization

  • If you want to input query together, Query focused summarization conducted.
>>> summ(contents, query="main character of Octonauts")
'Tunip is the smallest main character in the Octonauts crew.'

3. Abstractive QA (Auto Question Detection)

  • If you inputted question as query, Abstractive QA is conducted.
>>> summ(contents, query="What is Vegimal?")
'Half-animal, half-vegetable'
  • You can turn off this feature by setting param question_detection=False.
>>> summ(contents, query="SOME_QUERY", question_detection=False)

4. Prompt based Summarization

  • You can generate summary that begins with some sequence using param prompt.
  • It works like GPT-3's Prompt based generation. (but It doesn't work very well.)
>>> summ(contents, prompt="Q:Who is Tunip? A:")
"Q:Who is Tunip? A: Tunip is the Octonauts' head"

5. Query focused Summarization with Prompt

  • You can also input both query and prompt.
  • In this case, a query focus summary is generated that starts with a prompt.
>>> summ(contents, query="personality of Tunip", prompt="Tunip is very")
"Tunip is very childish and innocent, always wanting to help the Octonauts."

6. Options for Decoding Strategy

  • For generative models, decoding strategy is very important.
  • summarizers support variety of options for decoding strategy.
>>> summ(
...     contents=contents,
...     num_beams=10,
...     top_k=30,
...     top_p=0.85,
...     no_repeat_ngram_size=3,                  
... )

License

Copyright 2021 Hyunwoong Ko.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
Owner
Hyunwoong Ko
Research Engineer at @tunib-ai. previously @kakaobrain.
Hyunwoong Ko
🏖 Easy training and deployment of seq2seq models.

Headliner Headliner is a sequence modeling library that eases the training and in particular, the deployment of custom sequence models for both resear

Axel Springer Ideas Engineering GmbH 231 Nov 18, 2022
STonKGs is a Sophisticated Transformer that can be jointly trained on biomedical text and knowledge graphs

STonKGs STonKGs is a Sophisticated Transformer that can be jointly trained on biomedical text and knowledge graphs. This multimodal Transformer combin

STonKGs 27 Aug 11, 2022
MMDA - multimodal document analysis

MMDA - multimodal document analysis

AI2 75 Jan 04, 2023
Code for CVPR 2021 paper: Revamping Cross-Modal Recipe Retrieval with Hierarchical Transformers and Self-supervised Learning

Revamping Cross-Modal Recipe Retrieval with Hierarchical Transformers and Self-supervised Learning This is the PyTorch companion code for the paper: A

Amazon 69 Jan 03, 2023
A raytrace framework using taichi language

ti-raytrace The code use Taichi programming language Current implement acceleration lvbh disney brdf How to run First config your anaconda workspace,

蕉太狼 73 Dec 11, 2022
Python powered crossword generator with database with 20k+ polish words

crossword_generator Generate simple crossword puzzle from words and definitions fetched from krzyżowki.edu.pl endpoints -/ string:word - returns js

0 Jan 04, 2022
Mlcode - Continuous ML API Integrations

mlcode Basic APIs for ML applications. Django REST Application Contains REST API

Sujith S 1 Jan 01, 2022
Share constant definitions between programming languages and make your constants constant again

Introduction Reconstant lets you share constant and enum definitions between programming languages. Constants are defined in a yaml file and converted

Natan Yellin 47 Sep 10, 2022
NLP Text Classification

多标签文本分类任务 近年来随着深度学习的发展,模型参数的数量飞速增长。为了训练这些参数,需要更大的数据集来避免过拟合。然而,对于大部分NLP任务来说,构建大规模的标注数据集非常困难(成本过高),特别是对于句法和语义相关的任务。相比之下,大规模的未标注语料库的构建则相对容易。为了利用这些数据,我们可以

Jason 1 Nov 11, 2021
edge-SR: Super-Resolution For The Masses

edge-SR: Super Resolution For The Masses Citation Pablo Navarrete Michelini, Yunhua Lu and Xingqun Jiang. "edge-SR: Super-Resolution For The Masses",

Pablo 40 Nov 10, 2022
DaCy: The State of the Art Danish NLP pipeline using SpaCy

DaCy: A SpaCy NLP Pipeline for Danish DaCy is a Danish preprocessing pipeline trained in SpaCy. At the time of writing it has achieved State-of-the-Ar

Kenneth Enevoldsen 71 Jan 06, 2023
Prithivida 690 Jan 04, 2023
👄 The most accurate natural language detection library for Python, suitable for long and short text alike

1. What does this library do? Its task is simple: It tells you which language some provided textual data is written in. This is very useful as a prepr

Peter M. Stahl 334 Dec 30, 2022
Extract city and country mentions from Text like GeoText without regex, but FlashText, a Aho-Corasick implementation.

flashgeotext ⚡ 🌍 Extract and count countries and cities (+their synonyms) from text, like GeoText on steroids using FlashText, a Aho-Corasick impleme

Ben 57 Dec 16, 2022
Source code of the "Graph-Bert: Only Attention is Needed for Learning Graph Representations" paper

Graph-Bert Source code of "Graph-Bert: Only Attention is Needed for Learning Graph Representations". Please check the script.py as the entry point. We

14 Mar 25, 2022
InfoBERT: Improving Robustness of Language Models from An Information Theoretic Perspective

InfoBERT: Improving Robustness of Language Models from An Information Theoretic Perspective This is the official code base for our ICLR 2021 paper

AI Secure 71 Nov 25, 2022
Multi-Scale Temporal Frequency Convolutional Network With Axial Attention for Speech Enhancement

MTFAA-Net Unofficial PyTorch implementation of Baidu's MTFAA-Net: "Multi-Scale Temporal Frequency Convolutional Network With Axial Attention for Speec

Shimin Zhang 87 Dec 19, 2022
Help you discover excellent English projects and get rid of disturbing by other spoken language

GitHub English Top Charts 「Help you discover excellent English projects and get

GrowingGit 544 Jan 09, 2023
Correctly generate plurals, ordinals, indefinite articles; convert numbers to words

NAME inflect.py - Correctly generate plurals, singular nouns, ordinals, indefinite articles; convert numbers to words. SYNOPSIS import inflect p = in

Jason R. Coombs 762 Dec 29, 2022