Contact Extraction with Question Answering.

Overview

contactsQA

Extraction of contact entities from address blocks and imprints with Extractive Question Answering.

Goal

Input:

Dr. Max Mustermann
Hauptstraße 123
97070 Würzburg

Output:

entities = {
  "city" : "Würzburg",
  "email" : "",
  "fax" : "",
  "firstName" : "Max",
  "lastName" : "Mustermann",
  "mobile" : "",
  "organization" : "",
  "phone" : "",
  "position" : "",
  "street" : "Hauptstraße 123",
  "title" : "Dr.",
  "website" : "",
  "zip" : "97070"
}

Getting started

Creating a dataset

Due to data protection reasons, no dataset is included in this repository. You need to create a dataset in the SQuAD format, see https://huggingface.co/datasets/squad. Create the dataset in the jsonl-format where one line looks like this:

    {
        'id': '123',
        'title': 'mustermanns address',
        'context': 'Meine Adresse ist folgende: \n\nDr. Max Mustermann \nHauptstraße 123 \n97070 Würzburg \n Schicken Sie mir bitte die Rechnung zu.',
        'fixed': 'Dr. Max Mustermann \nHauptstraße 123 \n97070 Würzburg',
        'question': 'firstName',
        'answers': {
            'answer_start': [4],
            'text': ['Max']
        }
    }

Questions with no answers should look like this:

    {
        'id': '123',
        'title': 'mustermanns address',
        'context': 'Meine Adresse ist folgende: \n\nDr. Max Mustermann \nHauptstraße 123 \n97070 Würzburg \n Schicken Sie mir bitte die Rechnung zu.',
        'fixed': 'Dr. Max Mustermann \nHauptstraße 123 \n97070 Würzburg',
        'question': 'phone',
        'answers': {
            'answer_start': [-1],
            'text': ['EMPTY']
        }
    }

Split the dataset into a train-, validation- and test-dataset and save them in a directory with the name crawl, email or expected, like this:

├── data
│   ├── crawl
│   │   ├── crawl-test.jsonl
│   │   ├── crawl-train.jsonl
│   │   ├── crawl-val.jsonl

If you allow unanswerable questions like in SQuAD v2.0, add a -na behind the directory name, like this:

├── data
│   ├── crawl-na
│   │   ├── crawl-na-test.jsonl
│   │   ├── crawl-na-train.jsonl
│   │   ├── crawl-na-val.jsonl

Training a model

Example command for training and evaluating a dataset inside the crawl-na directory:

python app/qa-pipeline.py \
--batch_size 4 \
--checkpoint xlm-roberta-base \
--dataset_name crawl \
--dataset_path="../data/" \
--deactivate_map_caching \
--doc_stride 128 \
--epochs 3 \
--gpu_device 0 \
--learning_rate 0.00002 \
--max_answer_length 30 \
--max_length 384 \
--n_best_size 20 \
--n_jobs 8 \
--no_answers \
--overwrite_output_dir;

Virtual Environment Setup

Create and activate the environment (the python version and the environment name can vary at will):

$ python3.9 -m venv .env
$ source .env/bin/activate

To install the project's dependencies, activate the virtual environment and simply run (requires poetry):

$ poetry install

Alternatively, use the following:

$ pip install -r requirements.txt

Deactivate the environment:

$ deactivate

Troubleshooting

Common error:

ModuleNotFoundError: No module named 'setuptools'

The solution is to upgrade setuptools and then run poetry install or poetry update afterwards:

pip install --upgrade setuptools
Owner
Jan
Data Scientist (Working student) @snapADDY & Master student at Digital Humanities at Julius-Maximilians-University Würzburg.
Jan
Code associated with the Don't Stop Pretraining ACL 2020 paper

dont-stop-pretraining Code associated with the Don't Stop Pretraining ACL 2020 paper Citation @inproceedings{dontstoppretraining2020, author = {Suchi

AI2 449 Jan 04, 2023
Chinese real time voice cloning (VC) and Chinese text to speech (TTS).

Chinese real time voice cloning (VC) and Chinese text to speech (TTS). 好用的中文语音克隆兼中文语音合成系统,包含语音编码器、语音合成器、声码器和可视化模块。

Kuang Dada 6 Nov 08, 2022
Code for the paper "VisualBERT: A Simple and Performant Baseline for Vision and Language"

This repository contains code for the following two papers: VisualBERT: A Simple and Performant Baseline for Vision and Language (arxiv) with a short

Natural Language Processing @UCLA 464 Jan 04, 2023
Hostapd-mac-tod-acl - Setup a hostapd AP with MAC ToD ACL

A brief explanation This script provides a quick way to setup a Time-of-day (Tod

2 Feb 03, 2022
An implementation of WaveNet with fast generation

pytorch-wavenet This is an implementation of the WaveNet architecture, as described in the original paper. Features Automatic creation of a dataset (t

Vincent Herrmann 858 Dec 27, 2022
⛵️The official PyTorch implementation for "BERT-of-Theseus: Compressing BERT by Progressive Module Replacing" (EMNLP 2020).

BERT-of-Theseus Code for paper "BERT-of-Theseus: Compressing BERT by Progressive Module Replacing". BERT-of-Theseus is a new compressed BERT by progre

Kevin Canwen Xu 284 Nov 25, 2022
This repository contains the code for "Exploiting Cloze Questions for Few-Shot Text Classification and Natural Language Inference"

Pattern-Exploiting Training (PET) This repository contains the code for Exploiting Cloze Questions for Few-Shot Text Classification and Natural Langua

Timo Schick 1.4k Dec 30, 2022
American Sign Language (ASL) to Text Converter

Signterpreter American Sign Language (ASL) to Text Converter Recommendations Although there is grayscale and gaussian blur, we recommend that you use

0 Feb 20, 2022
A 10000+ hours dataset for Chinese speech recognition

A 10000+ hours dataset for Chinese speech recognition

309 Dec 16, 2022
An open source library for deep learning end-to-end dialog systems and chatbots.

DeepPavlov is an open-source conversational AI library built on TensorFlow, Keras and PyTorch. DeepPavlov is designed for development of production re

Neural Networks and Deep Learning lab, MIPT 6k Dec 30, 2022
A sample project that exists for PyPUG's "Tutorial on Packaging and Distributing Projects"

A sample Python project A sample project that exists as an aid to the Python Packaging User Guide's Tutorial on Packaging and Distributing Projects. T

Python Packaging Authority 4.5k Dec 30, 2022
Tevatron is a simple and efficient toolkit for training and running dense retrievers with deep language models.

Tevatron Tevatron is a simple and efficient toolkit for training and running dense retrievers with deep language models. The toolkit has a modularized

texttron 193 Jan 04, 2023
ADCS cert template modification and ACL enumeration

Purpose This tool is designed to aid an operator in modifying ADCS certificate templates so that a created vulnerable state can be leveraged for privi

Fortalice Solutions, LLC 78 Dec 12, 2022
A python framework to transform natural language questions to queries in a database query language.

__ _ _ _ ___ _ __ _ _ / _` | | | |/ _ \ '_ \| | | | | (_| | |_| | __/ |_) | |_| | \__, |\__,_|\___| .__/ \__, | |_| |_| |___/

Machinalis 1.2k Dec 18, 2022
An official repository for tutorials of Probabilistic Modelling and Reasoning (2021/2022) - a University of Edinburgh master's course.

PMR computer tutorials on HMMs (2021-2022) This is a repository for computer tutorials of Probabilistic Modelling and Reasoning (2021/2022) - a Univer

Vaidotas Šimkus 10 Dec 06, 2022
Code for the paper: Sequence-to-Sequence Learning with Latent Neural Grammars

Code for the paper: Sequence-to-Sequence Learning with Latent Neural Grammars

Yoon Kim 43 Dec 23, 2022
This project uses word frequency and Term Frequency-Inverse Document Frequency to summarize a text.

Text Summarizer This project uses word frequency and Term Frequency-Inverse Document Frequency to summarize a text. Team Members This mini-project was

1 Nov 16, 2021
Community and sentiment analysis based on tweets

The project has set itself the goal of analyzing the thoughts and interaction of Italian users through the social posts expressed through the Twitter platform on the day of the entry into force of th

3 Nov 17, 2022
Machine Psychology: Python Generated Art

Machine Psychology: Python Generated Art A limited collection of 64 algorithmically generated artwork. Each unique piece is then given a title by the

Pixegami Team 67 Dec 13, 2022
novel deep learning research works with PaddlePaddle

Research 发布基于飞桨的前沿研究工作,包括CV、NLP、KG、STDM等领域的顶会论文和比赛冠军模型。 目录 计算机视觉(Computer Vision) 自然语言处理(Natrual Language Processing) 知识图谱(Knowledge Graph) 时空数据挖掘(Spa

1.5k Jan 03, 2023