Code for using and evaluating SpanBERT.

Overview

SpanBERT

This repository contains code and models for the paper: SpanBERT: Improving Pre-training by Representing and Predicting Spans. If you prefer to use Huggingface, please check out this link -- https://huggingface.co/SpanBERT

Requirements

Apex

Please use an earlier commit of Apex - NVIDIA/[email protected]

Pre-trained Models

We release both base and large cased models for SpanBERT. The base & large models have the same model configuration as BERT but they differ in both the masking scheme and the training objectives (see our paper for more details).

These models have the same format as the HuggingFace BERT models, so you can easily replace them with our SpanBET models. If you would like to use our fine-tuning code, the model paths are already hard-coded in the code :)

SQuAD 1.1 SQuAD 2.0 Coref TACRED
F1 F1 avg. F1 F1
BERT (base) 88.5* 76.5* 73.1 67.7
SpanBERT (base) 92.4* 83.6* 77.4 68.2
BERT (large) 91.3 83.3 77.1 66.4
SpanBERT (large) 94.6 88.7 79.6 70.8

Note: The numbers marked as * are evaluated on the development sets because we didn't submit those models to the official SQuAD leaderboard. All the other numbers are test numbers.

Fine-tuning

SQuAD 1.1

python code/run_squad.py \
  --do_train \
  --do_eval \
  --model spanbert-base-cased \
  --train_file train-v1.1.json \
  --dev_file dev-v1.1.json \
  --train_batch_size 32 \
  --eval_batch_size 32  \
  --learning_rate 2e-5 \
  --num_train_epochs 4 \
  --max_seq_length 512 \
  --doc_stride 128 \
  --eval_metric f1 \
  --output_dir squad_output \
  --fp16

SQuAD 2.0

python code/run_squad.py \
  --do_train \
  --do_eval \
  --model spanbert-base-cased \
  --train_file train-v2.0.json \
  --dev_file dev-v2.0.json \
  --train_batch_size 32 \
  --eval_batch_size 32  \
  --learning_rate 2e-5 \
  --num_train_epochs 4 \
  --max_seq_length 512 \
  --doc_stride 128 \
  --eval_metric best_f1 \
  --output_dir squad2_output \
  --version_2_with_negative \
  --fp16

TACRED

python code/run_tacred.py \
  --do_train \
  --do_eval \
  --data_dir <TACRED_DATA_DIR> \
  --model spanbert-base-cased \
  --train_batch_size 32 \
  --eval_batch_size 32 \
  --learning_rate 2e-5 \
  --num_train_epochs 10 \
  --max_seq_length 128 \
  --output_dir tacred_dir \
  --fp16

MRQA (NewsQA, TriviaQA, SearchQA, HotpotQA, NaturalQuestions)

python code/run_mrqa.py \
  --do_train \
  --do_eval \
  --model spanbert-base-cased \
  --train_file TriviaQA-train.jsonl.gz \
  --dev_file TriviaQA-dev.jsonl.gz \
  --train_batch_size 32 \
  --eval_batch_size 32 \
  --learning_rate 2e-5 \
  --num_train_epochs 4 \
  --max_seq_length 512 \
  --doc_stride 128 \
  --eval_per_epoch 5 \
  --output_dir triviaqa_dir \
  --fp16

GLUE

python code/run_glue.py \
   --task_name RTE \
   --model spanbert-base-cased \
   --do_train \
   --do_eval \
   --data_dir <RTE_DATA_DIR> \
   --train_batch_size 32 \
   --eval_batch_size 32 \
   --num_train_epochs 10  \
   --max_seq_length 128 \
   --learning_rate 2e-5 \
   --output_dir RTE_DIR \
   --fp16

Coreference Resolution

Our coreference resolution fine-tuning code is implemented in Tensorflow. Please see https://github.com/mandarjoshi90/coref for more details.

Finetuned Models (SQuAD 1.1/2.0, Relation Extraction, Coreference Resolution)

If you are interested in using our fine-tuned models for downstream tasks, directly, please use the following script.

./code/download_finetuned.sh <model_dir> <task>

where <task> is one of [squad1, squad2, tacred]. You can evaluate the models by setting --do_train to false, --do_eval to true, and --output_dir to <model_dir>/<task> in python code/run_<task>.py.

For coreference resolution, please refer to this repository -- https://github.com/mandarjoshi90/coref

Citation

  @article{joshi2019spanbert,
      title={{SpanBERT}: Improving Pre-training by Representing and Predicting Spans},
      author={Mandar Joshi and Danqi Chen and Yinhan Liu and Daniel S. Weld and Luke Zettlemoyer and Omer Levy},
      journal={arXiv preprint arXiv:1907.10529},
      year={2019}
    }

License

SpanBERT is CC-BY-NC 4.0. The license applies to the pre-trained models as well.

Contact

If you have any questions, please contact Mandar Joshi <[email protected]> or Danqi Chen <[email protected]> or create a Github issue.

Owner
Meta Research
Meta Research
NLP and Text Generation Experiments in TensorFlow 2.x / 1.x

Code has been run on Google Colab, thanks Google for providing computational resources Contents Natural Language Processing(自然语言处理) Text Classificati

1.5k Nov 14, 2022
keras implement of transformers for humans

keras implement of transformers for humans

苏剑林(Jianlin Su) 4.8k Jan 03, 2023
Sentence boundary disambiguation tool for Japanese texts (日本語文境界判定器)

Bunkai Bunkai is a sentence boundary (SB) disambiguation tool for Japanese texts. Quick Start $ pip install bunkai $ echo -e '宿を予約しました♪!まだ2ヶ月も先だけど。早すぎ

Megagon Labs 160 Dec 23, 2022
🕹 An esoteric language designed so that the program looks like the transcript of a Pokémon battle

PokéBattle is an esoteric language designed so that the program looks like the transcript of a Pokémon battle. Original inspiration and specification

Eduardo Correia 9 Jan 11, 2022
Python implementation of TextRank for phrase extraction and summarization of text documents

PyTextRank PyTextRank is a Python implementation of TextRank as a spaCy pipeline extension, used to: extract the top-ranked phrases from text document

derwen.ai 1.9k Jan 06, 2023
[ICCV 2021] Instance-level Image Retrieval using Reranking Transformers

Instance-level Image Retrieval using Reranking Transformers Fuwen Tan, Jiangbo Yuan, Vicente Ordonez, ICCV 2021. Abstract Instance-level image retriev

UVA Computer Vision 86 Dec 28, 2022
Various Algorithms for Short Text Mining

Short Text Mining in Python Introduction This package shorttext is a Python package that facilitates supervised and unsupervised learning for short te

Kwan-Yuet 466 Dec 06, 2022
Dense Passage Retriever - is a set of tools and models for open domain Q&A task.

Dense Passage Retrieval Dense Passage Retrieval (DPR) - is a set of tools and models for state-of-the-art open-domain Q&A research. It is based on the

Meta Research 1.1k Jan 07, 2023
Web mining module for Python, with tools for scraping, natural language processing, machine learning, network analysis and visualization.

Pattern Pattern is a web mining module for Python. It has tools for: Data Mining: web services (Google, Twitter, Wikipedia), web crawler, HTML DOM par

Computational Linguistics Research Group 8.4k Dec 30, 2022
Quick insights from Zoom meeting transcripts using Graph + NLP

Transcript Analysis - Graph + NLP This program extracts insights from Zoom Meeting Transcripts (.vtt) using TigerGraph and NLTK. In order to run this

Advit Deepak 7 Sep 17, 2022
DeeBERT: Dynamic Early Exiting for Accelerating BERT Inference

DeeBERT This is the code base for the paper DeeBERT: Dynamic Early Exiting for Accelerating BERT Inference. Code in this repository is also available

Castorini 132 Nov 14, 2022
String Gen + Word Checker

Creates random strings and checks if any of them are a real words. Mostly a waste of time ngl but it is cool to see it work and the fact that it can generate a real random word within10sec

1 Jan 06, 2022
p-tuning for few-shot NLU task

p-tuning_NLU Overview 这个小项目是受乐于分享的苏剑林大佬这篇p-tuning 文章启发,也实现了个使用P-tuning进行NLU分类的任务, 思路是一样的,prompt实现方式有不同,这里是将[unused*]的embeddings参数抽取出用于初始化prompt_embed后

3 Dec 29, 2022
Full Spectrum Bioinformatics - a free online text designed to introduce key topics in Bioinformatics using the Python

Full Spectrum Bioinformatics is a free online text designed to introduce key topics in Bioinformatics using the Python programming language. The text is written in interactive Jupyter Notebooks, whic

Jesse Zaneveld 33 Dec 28, 2022
Modified GPT using average pooling to reduce the softmax attention memory constraints.

NLP-GPT-Upsampling This repository contains an implementation of Open AI's GPT Model. In particular, this implementation takes inspiration from the Ny

WD 1 Dec 03, 2021
spaCy plugin for Transformers , Udify, ELmo, etc.

Camphr - spaCy plugin for Transformers, Udify, Elmo, etc. Camphr is a Natural Language Processing library that helps in seamless integration for a wid

342 Nov 21, 2022
UniSpeech - Large Scale Self-Supervised Learning for Speech

UniSpeech The family of UniSpeech: WavLM (arXiv): WavLM: Large-Scale Self-Supervised Pre-training for Full Stack Speech Processing UniSpeech (ICML 202

Microsoft 281 Dec 15, 2022
SciBERT is a BERT model trained on scientific text.

SciBERT is a BERT model trained on scientific text.

AI2 1.2k Dec 24, 2022
nlpcommon is a python Open Source Toolkit for text classification.

nlpcommon nlpcommon, Python Text Tool. Guide Feature Install Usage Dataset Contact Cite Reference Feature nlpcommon is a python Open Source

xuming 3 May 29, 2022
Adversarial Examples for Extreme Multilabel Text Classification

Adversarial Examples for Extreme Multilabel Text Classification The code is adapted from the source codes of BERT-ATTACK [1], APLC_XLNet [2], and Atte

1 May 14, 2022