Sample data associated with the Aurora-BP study

Overview

The Aurora-BP Study and Dataset

This repository contains sample code, sample data, and explanatory information for working with the Aurora-BP dataset released alongside the publication of the Aurora-BP study, i.e., Mieloszyk, Rebecca, et al. "A Comparison of Wearable Tonometry, Photoplethysmography, and Electrocardiography for Cuffless Measurement of Blood Pressure in an Ambulatory Setting." IEEE Journal of Biomedical and Health Informatics (2022). The dataset includes de-identified participant information, raw sensor data aligned with each measurement, and a wide variety of features derived from sensor data. The publishing of this dataset as well as the characterization of multiple feature groups across a broad population and multiple settings are intended to aid future cardiovascular research.

Note that the data contained in this repository represent a very small sample of the full dataset, meant only to illustrate the structure of the files and allow testing with the sample code. For access to the full dataset, see the Data Use Application section below.

Navigation:

  • docs:
    • Data file descriptions, a detailed overview of the Aurora-BP Study protocol, and supplemental results not included in the Aurora-BP Study publication
  • notebooks:
    • Sample Jupyter notebooks and environment files for basic analyses using Aurora-BP Study data
  • sample:
    • Example data files, to run sample Jupyter notebooks and provide researchers a direct look at the data format before application for full data access.

Citation

If you use this repository, part or all of the full dataset, and/or our paper as part of your research, please refer to the dataset as the Aurora-BP dataset and cite the publication as below:


Data Access

Data Access Committee

Requests for data access are reviewed by the Data Access Committee. During review, the submitting investigator and primary investigator may be contacted for verification. The information you will need to gather to submit a Data Use Application as well as a link to the form are listed below. For additional questions regarding data access, contact: [email protected]


Data Use Application

Full data files are stored separately from this repo within an Azure data lake. To gain access to these data files, a data use application (detailed below and on the data lake landing page) must be submitted. Any researcher may submit a data use application, which includes:

  • Principal investigator information
    • Academic credentials, affiliation, contact information, curriculum vitae, signature attesting accuracy of data use application
  • Additional investigator information
    • Academic credentials, affiliation, contact information
  • Research proposal
  • Acknowledgement to comply with data use agreement. Key points are listed below:
    • No sharing of data with anyone outside of approved PI and other specified investigators. New investigators must be reviewed.
    • No data use outside of stated proposal scope
    • No joining of data with other data sources
    • No attempt to identify participants, contact participants, or reconstruct PII
    • Storage with appropriate access control and best practices
    • You may publish (or present papers or articles) on your results from using the data provided that no confidential information of Microsoft and no Personal Information are included in any such publication or presentation
    • Any publication or presentation resulting from use of the data should include reference to the Aurora-BP Study, with full reference to the source publication when appropriate
    • Aurora-BP Study authors and Microsoft are under no obligation to provide any support or additional materials related to the use of these data
    • Aurora-BP Study authors and Microsoft are not liable for any losses, damages, or harms of any kind in connection to the use of these data
    • Aurora-BP Study authors and Microsoft are not responsible or liable for the accuracy, usefulness or availability of these data
    • Primary Investigator will provide a signature of attestation that they have read, understood, and accept the data use agreement
Owner
Microsoft
Open source projects and samples from Microsoft
Microsoft
🚀Clone a voice in 5 seconds to generate arbitrary speech in real-time

English | 中文 Features 🌍 Chinese supported mandarin and tested with multiple datasets: aidatatang_200zh, magicdata, aishell3, data_aishell, and etc. ?

Vega 25.6k Dec 31, 2022
Code for text augmentation method leveraging large-scale language models

HyperMix Code for our paper GPT3Mix and conducting classification experiments using GPT-3 prompt-based data augmentation. Getting Started Installing P

NAVER AI 47 Dec 20, 2022
[NeurIPS 2021] Code for Learning Signal-Agnostic Manifolds of Neural Fields

Learning Signal-Agnostic Manifolds of Neural Fields This is the uncleaned code for the paper Learning Signal-Agnostic Manifolds of Neural Fields. The

60 Dec 12, 2022
Knowledge Oriented Programming Language

KoPL: 面向知识的推理问答编程语言 安装 | 快速开始 | 文档 KoPL全称 Knowledge oriented Programing Language, 是一个为复杂推理问答而设计的编程语言。我们可以将自然语言问题表示为由基本函数组合而成的KoPL程序,程序运行的结果就是问题的答案。目前,

THU-KEG 62 Dec 12, 2022
Simple tool/toolkit for evaluating NLG (Natural Language Generation) offering various automated metrics.

Simple tool/toolkit for evaluating NLG (Natural Language Generation) offering various automated metrics. Jury offers a smooth and easy-to-use interface. It uses datasets for underlying metric computa

Open Business Software Solutions 129 Jan 06, 2023
Modified GPT using average pooling to reduce the softmax attention memory constraints.

NLP-GPT-Upsampling This repository contains an implementation of Open AI's GPT Model. In particular, this implementation takes inspiration from the Ny

WD 1 Dec 03, 2021
Code for the ACL 2021 paper "Structural Guidance for Transformer Language Models"

Structural Guidance for Transformer Language Models This repository accompanies the paper, Structural Guidance for Transformer Language Models, publis

International Business Machines 10 Dec 14, 2022
一个基于Nonebot2和go-cqhttp的娱乐性qq机器人

Takker - 一个普通的QQ机器人 此项目为基于 Nonebot2 和 go-cqhttp 开发,以 Sqlite 作为数据库的QQ群娱乐机器人 关于 纯兴趣开发,部分功能借鉴了大佬们的代码,作为Q群的娱乐+功能性Bot 声明 此项目仅用于学习交流,请勿用于非法用途 这是开发者的第一个Pytho

风屿 79 Dec 29, 2022
Code for papers "Generation-Augmented Retrieval for Open-Domain Question Answering" and "Reader-Guided Passage Reranking for Open-Domain Question Answering", ACL 2021

This repo provides the code of the following papers: (GAR) "Generation-Augmented Retrieval for Open-domain Question Answering", ACL 2021 (RIDER) "Read

morning 49 Dec 26, 2022
Finally decent dictionaries based on Wiktionary for your beloved eBook reader.

eBook Reader Dictionaries Finally, decent dictionaries based on Wiktionary for your beloved eBook reader. Dictionaries Catalan 🚧 Ελληνικά (help welco

Mickaël Schoentgen 163 Dec 31, 2022
To classify the News into Real/Fake using Features from the Text Content of the article

Hoax-Detector Authenticity of news has now become a major problem. The Idea is to classify the News into Real/Fake using Features from the Text Conten

Aravindhan 1 Feb 09, 2022
MiCECo - Misskey Custom Emoji Counter

MiCECo Misskey Custom Emoji Counter Introduction This little script counts custo

7 Dec 25, 2022
Stand-alone language identification system

langid.py readme Introduction langid.py is a standalone Language Identification (LangID) tool. The design principles are as follows: Fast Pre-trained

2k Jan 04, 2023
jel - Japanese Entity Linker - is Bi-encoder based entity linker for japanese.

jel: Japanese Entity Linker jel - Japanese Entity Linker - is Bi-encoder based entity linker for japanese. Usage Currently, link and question methods

izuna385 10 Jan 06, 2023
Host your own GPT-3 Discord bot

GPT3 Discord Bot Host your own GPT-3 Discord bot i'd host and make the bot invitable myself, however GPT3 terms of service prohibit public use of GPT3

[something hillarious here] 8 Jan 07, 2023
Code Implementation of "Learning Span-Level Interactions for Aspect Sentiment Triplet Extraction".

Span-ASTE: Learning Span-Level Interactions for Aspect Sentiment Triplet Extraction ***** New March 31th, 2022: Scikit-Style API for Easy Usage *****

Chia Yew Ken 111 Dec 23, 2022
The source code of "Language Models are Few-shot Multilingual Learners" (MRL @ EMNLP 2021)

Language Models are Few-shot Multilingual Learners Paper This is the source code of the paper [Arxiv] [ACL Anthology]: This code has been written usin

Genta Indra Winata 45 Nov 21, 2022
GraphNLI: A Graph-based Natural Language Inference Model for Polarity Prediction in Online Debates

GraphNLI: A Graph-based Natural Language Inference Model for Polarity Prediction in Online Debates Vibhor Agarwal, Sagar Joglekar, Anthony P. Young an

Vibhor Agarwal 2 Jun 30, 2022
Get list of common stop words in various languages in Python

Python Stop Words Table of contents Overview Available languages Installation Basic usage Python compatibility Overview Get list of common stop words

Alireza Savand 142 Dec 21, 2022
端到端的长本文摘要模型(法研杯2020司法摘要赛道)

端到端的长文本摘要模型(法研杯2020司法摘要赛道)

苏剑林(Jianlin Su) 334 Jan 08, 2023