PromptDet: Expand Your Detector Vocabulary with Uncurated Images

Overview

PromptDet: Expand Your Detector Vocabulary with Uncurated Images

Paper     Website

Introduction

The goal of this work is to establish a scalable pipeline for expanding an object detector towards novel/unseen categories, using zero manual annotations. To achieve that, we make the following four contributions: (i) in pursuit of generalisation, we propose a two-stage open-vocabulary object detector that categorises each box proposal by a classifier generated from the text encoder of a pre-trained visual-language model; (ii) To pair the visual latent space (from RPN box proposal) with that of the pre-trained text encoder, we propose the idea of regional prompt learning to optimise a couple of learnable prompt vectors, converting the textual embedding space to fit those visually object-centric images; (iii) To scale up the learning procedure towards detecting a wider spectrum of objects, we exploit the available online resource, iteratively updating the prompts, and later self-training the proposed detector with pseudo labels generated on a large corpus of noisy, uncurated web images. The self-trained detector, termed as PromptDet, significantly improves the detection performance on categories for which manual annotations are unavailable or hard to obtain, e.g. rare categories. Finally, (iv) to validate the necessity of our proposed components, we conduct extensive experiments on the challenging LVIS and MS-COCO dataset, showing superior performance over existing approaches with fewer additional training images and zero manual annotations whatsoever.

Training framework

method overview

Prerequisites

  • MMDetection version 2.16.0.

  • Please see get_started.md for installation and the basic usage of MMDetection.

Inference

./tools/dist_test.sh configs/promptdet/promptdet_mask_rcnn_r50_fpn_sample1e-3_mstrain_1x_lvis_v1.py work_dirs/promptdet_mask_rcnn_r50_fpn_sample1e-3_mstrain_1x_lvis_v1.pth 4 --eval bbox segm

Train

To be updated.

Models

For your convenience, we provide the following trained models (PromptDet) with mask AP.

Model Epochs Scale Jitter Input Size APnovel APc APf AP Config Download
PromptDet_R_50_FPN_1x 12 640~800 800x800 19.0 18.5 25.8 21.4 config google / baidu
PromptDet_R_50_FPN_6x 72 100~1280 800x800 21.4 23.3 29.3 25.3 config google / baidu

[0] All results are obtained with a single model and without any test time data augmentation such as multi-scale, flipping and etc..
[1] Refer to more details in config files in config/promptdet/.
[2] Extraction code of baidu netdisk: promptdet.

Acknowledgement

Thanks MMDetection team for the wonderful open source project!

Citation

If you find PromptDet useful in your research, please consider citing:

@inproceedings{feng2022promptdet,
    title={PromptDet: Expand Your Detector Vocabulary with Uncurated Images},
    author={Feng, Chengjian and Zhong, Yujie and Jie, Zequn and Chu, Xiangxiang and Ren, Haibing and Wei, Xiaolin and Xie, Weidi and Ma, Lin},
    journal={arXiv preprint arXiv:2203.16513},
    year={2022}
}
An MQA (Studio, originalSampleRate) identifier for lossless flac files written in Python.

An MQA (Studio, originalSampleRate) identifier for "lossless" flac files written in Python.

Daniel 10 Oct 03, 2022
This is the latest version of the PULP SDK

PULP-SDK This is the latest version of the PULP SDK, which is under active development. The previous (now legacy) version, which is no longer supporte

78 Dec 07, 2022
DeRF: Decomposed Radiance Fields

DeRF: Decomposed Radiance Fields Daniel Rebain, Wei Jiang, Soroosh Yazdani, Ke Li, Kwang Moo Yi, Andrea Tagliasacchi Links Paper Project Page Abstract

UBC Computer Vision Group 24 Dec 02, 2022
A PyTorch Toolbox for Face Recognition

FaceX-Zoo FaceX-Zoo is a PyTorch toolbox for face recognition. It provides a training module with various supervisory heads and backbones towards stat

JDAI-CV 1.6k Jan 06, 2023
The implementation of ICASSP 2020 paper "Pixel-level self-paced learning for super-resolution"

Pixel-level Self-Paced Learning for Super-Resolution This is an official implementaion of the paper Pixel-level Self-Paced Learning for Super-Resoluti

Elon Lin 41 Dec 15, 2022
An open source library for face detection in images. The face detection speed can reach 1000FPS.

libfacedetection This is an open source library for CNN-based face detection in images. The CNN model has been converted to static variables in C sour

Shiqi Yu 11.4k Dec 27, 2022
Semi-supervised semantic segmentation needs strong, varied perturbations

Semi-supervised semantic segmentation using CutMix and Colour Augmentation Implementations of our papers: Semi-supervised semantic segmentation needs

146 Dec 20, 2022
RepVGG: Making VGG-style ConvNets Great Again

RepVGG: Making VGG-style ConvNets Great Again (PyTorch) This is a super simple ConvNet architecture that achieves over 80% top-1 accuracy on ImageNet

2.8k Jan 04, 2023
Automatic deep learning for image classification.

AutoDL AutoDL automates machine learning tasks enabling you to easily achieve strong predictive performance in your applications. With just a few line

wenqi 2 Oct 12, 2022
Underwater image enhancement

LANet Our work proposes an adaptive learning attention network (LANet) to solve the problem of color casts and low illumination in underwater images.

LiuShiBen 7 Sep 14, 2022
Pun Detection and Location

Pun Detection and Location “The Boating Store Had Its Best Sail Ever”: Pronunciation-attentive Contextualized Pun Recognition Yichao Zhou, Jyun-yu Jia

lawson 3 May 13, 2022
Hashformers is a framework for hashtag segmentation with transformers.

Hashtag segmentation is the task of automatically inserting the missing spaces between the words in a hashtag. Hashformers applies Transformer models

Ruan Chaves 41 Nov 09, 2022
Code for the SIGGRAPH 2022 paper "DeltaConv: Anisotropic Operators for Geometric Deep Learning on Point Clouds."

DeltaConv [Paper] [Project page] Code for the SIGGRAPH 2022 paper "DeltaConv: Anisotropic Operators for Geometric Deep Learning on Point Clouds" by Ru

98 Nov 26, 2022
Face Recognize System on camera AI OAK1

FRS on OAK1 Face Recognize System on camera OAK1 This project contains our work that deploy on camera OAK1 Features Anti-Spoofing Face detection Face

Tran Anh Tuan 6 Aug 08, 2022
PPLNN is a Primitive Library for Neural Network is a high-performance deep-learning inference engine for efficient AI inferencing

PPLNN is a Primitive Library for Neural Network is a high-performance deep-learning inference engine for efficient AI inferencing

943 Jan 07, 2023
Code repository for Semantic Terrain Classification for Off-Road Autonomous Driving

BEVNet Datasets Datasets should be put inside data/. For example, data/semantic_kitti_4class_100x100. Training BEVNet-S Example: cd experiments bash t

(Brian) JoonHo Lee 24 Dec 12, 2022
GeoMol: Torsional Geometric Generation of Molecular 3D Conformer Ensembles

GeoMol: Torsional Geometric Generation of Molecular 3D Conformer Ensembles This repository contains a method to generate 3D conformer ensembles direct

127 Dec 20, 2022
Model that predicts the probability of a Twitter user being anti-vaccination.

stylebody {text-align: justify}/style AVAXTAR: Anti-VAXx Tweet AnalyzeR AVAXTAR is a python package to identify anti-vaccine users on twitter. The

10 Sep 27, 2022
Top #1 Submission code for the first https://alphamev.ai MEV competition with best AUC (0.9893) and MSE (0.0982).

alphamev-winning-submission Top #1 Submission code for the first alphamev MEV competition with best AUC (0.9893) and MSE (0.0982). The code won't run

70 Oct 29, 2022