Official implementation of Protected Attribute Suppression System, ICCV 2021

Related tags

Deep LearningPASS
Overview

Introduction

This repository contains the source code for training PASS-g and PASS-s using features from a pre-trained model.

BibTeX:

@InProceedings{Dhar_Gleason_2021_ICCV,
    author    = {Dhar, Prithviraj and Gleason, Joshua and Roy, Aniket and Castillo, Carlos D. and Chellappa, Rama},
    title     = {{PASS}: Protected Attribute Suppression System for Mitigating Bias in Face Recognition},
    booktitle = {Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV)},
    month     = {October},
    year      = {2021},
    pages     = {15087-15096}
}

Running The Code

Requirements are defined in requirements.txt and may be installed in a new virtual environment using

pip install -r requirements.txt

An example configuration is defined in config/config_template.yaml.

In the config file set TYPE:'race' for PASS-s or TYPE:'gender' for PASS-g.

Required Input Files

Training features (train.py)

This file should be provided in the TRAIN_BIN_FEATS and VAL_BIN_FEATS config entries. Must be a binary file. Given a numpy array of N 512-dimensional features you can create this file using the following snippet (note we assume binary file created with same byte order as system used to train)

import numpy as np
import struct

# feat = ... (load features into np.ndarray of shape [N, 512])
# ...

with open('input_features.bin', 'wb') as f:
    f.write(struct.pack('i', np.int32(N)))
    f.write(struct.pack('i', np.int32(512)))
    np.ascontiguousarray(feat).astype(np.float32).tofile(f)

Training metadata (train.py)

This file should be provided in the TRAIN_META and VAL_META config entries. This CSV file must contain information about each training feature (one-to-one corresponding) and must contain the following columns:

SUBJECT_ID,FILENAME,RACE,PR_MALE
  • SUBJECT_ID is an integer corresponding to subject
  • FILENAME is original filename that feature was extracted from (not used currently)
  • RACE is an integer representing a BUPT class label between 0 and 3 with {0: asian, 1: caucasian, 2: african, 3: indian}
  • PR_MALE is a float between 0 and 1 representing probability that subject is male

Note that for PASS-g RACE may be omitted and for PASS-s PR_MALE may be omitted.

Test features (inference.py)

CSV file containing features to perform debiasing on after training is finished with following columns:

SUBJECT_ID,FILENAME,DEEPFEATURE_1,...,DEEPFEATURE_512

where DEEPFEATURE_* contains the value of the input feature at the specified dimension.


To run PASS training execute

python train.py

To generate debiased features, select the desired checkpoint file and update CHECKPOINT_FILE in the config then run

python inference.py
Owner
Prithviraj Dhar
Prithviraj Dhar
Thermal Control of Laser Powder Bed Fusion using Deep Reinforcement Learning

This repository is the implementation of the paper "Thermal Control of Laser Powder Bed Fusion Using Deep Reinforcement Learning", linked here. The project makes use of the Deep Reinforcement Library

BaratiLab 11 Dec 27, 2022
[ICLR 2022] Pretraining Text Encoders with Adversarial Mixture of Training Signal Generators

AMOS This repository contains the scripts for fine-tuning AMOS pretrained models on GLUE and SQuAD 2.0 benchmarks. Paper: Pretraining Text Encoders wi

Microsoft 22 Sep 15, 2022
PyTorch(Geometric) implementation of G^2GNN in "Imbalanced Graph Classification via Graph-of-Graph Neural Networks"

This repository is an official PyTorch(Geometric) implementation of G^2GNN in "Imbalanced Graph Classification via Graph-of-Graph Neural Networks". Th

Yu Wang (Jack) 13 Nov 18, 2022
Crossover Learning for Fast Online Video Instance Segmentation (ICCV 2021)

TL;DR: CrossVIS (Crossover Learning for Fast Online Video Instance Segmentation) proposes a novel crossover learning paradigm to fully leverage rich c

Hust Visual Learning Team 79 Nov 25, 2022
(SIGIR2020) “Asymmetric Tri-training for Debiasing Missing-Not-At-Random Explicit Feedback’’

Asymmetric Tri-training for Debiasing Missing-Not-At-Random Explicit Feedback About This repository accompanies the real-world experiments conducted i

yuta-saito 19 Dec 01, 2022
Detection of PCBA defect

Detection_of_PCBA_defect Detection_of_PCBA_defect Use yolov5 to train. $pip install -r requirements.txt Detect.py will detect file(jpg,mp4...) in cu

6 Nov 28, 2022
Unsupervised phone and word segmentation using dynamic programming on self-supervised VQ features.

Unsupervised Phone and Word Segmentation using Vector-Quantized Neural Networks Overview Unsupervised phone and word segmentation on speech data is pe

Herman Kamper 13 Dec 11, 2022
Using LSTM write Tang poetry

本教程将通过一个示例对LSTM进行介绍。通过搭建训练LSTM网络,我们将训练一个模型来生成唐诗。本文将对该实现进行详尽的解释,并阐明此模型的工作方式和原因。并不需要过多专业知识,但是可能需要新手花一些时间来理解的模型训练的实际情况。为了节省时间,请尽量选择GPU进行训练。

56 Dec 15, 2022
Deep Learning ❤️ OneFlow

Deep Learning with OneFlow made easy 🚀 ! Carefree? carefree-learn aims to provide CAREFREE usages for both users and developers. User Side Computer V

21 Oct 27, 2022
LSTC: Boosting Atomic Action Detection with Long-Short-Term Context

LSTC: Boosting Atomic Action Detection with Long-Short-Term Context This Repository contains the code on AVA of our ACM MM 2021 paper: LSTC: Boosting

Tencent YouTu Research 9 Oct 11, 2022
This is the official Pytorch-version code of FlatGCN (Flattened Graph Convolutional Networks for Recommendation).

FlatGCN This is the official Pytorch-version code of FlatGCN (Flattened Graph Convolutional Networks for Recommendation, submitted to ICASSP2022). Req

Dreamer 2 Aug 09, 2022
[NeurIPS 2021] Towards Better Understanding of Training Certifiably Robust Models against Adversarial Examples | ⛰️⚠️

Towards Better Understanding of Training Certifiably Robust Models against Adversarial Examples This repository is the official implementation of "Tow

Sungyoon Lee 4 Jul 12, 2022
NPBG++: Accelerating Neural Point-Based Graphics

[CVPR 2022] NPBG++: Accelerating Neural Point-Based Graphics Project Page | Paper This repository contains the official Python implementation of the p

Ruslan Rakhimov 57 Dec 03, 2022
DANA paper supplementary materials

DANA Supplements This repository stores the data, results, and R scripts to generate these reuslts and figures for the corresponding paper Depth Norma

0 Dec 17, 2021
Spherical Confidence Learning for Face Recognition, accepted to CVPR2021.

Sphere Confidence Face (SCF) This repository contains the PyTorch implementation of Sphere Confidence Face (SCF) proposed in the CVPR2021 paper: Shen

Maths 70 Dec 09, 2022
Super-BPD: Super Boundary-to-Pixel Direction for Fast Image Segmentation (CVPR 2020)

Super-BPD for Fast Image Segmentation (CVPR 2020) Introduction We propose direction-based super-BPD, an alternative to superpixel, for fast generic im

189 Dec 07, 2022
《Towards High Fidelity Face Relighting with Realistic Shadows》(CVPR 2021)

Towards High Fidelity Face-Relighting with Realistic Shadows Andrew Hou, Ze Zhang, Michel Sarkis, Ning Bi, Yiying Tong, Xiaoming Liu. In CVPR, 2021. T

114 Dec 10, 2022
PyTorch code for our paper "Image Super-Resolution with Non-Local Sparse Attention" (CVPR2021).

Image Super-Resolution with Non-Local Sparse Attention This repository is for NLSN introduced in the following paper "Image Super-Resolution with Non-

143 Dec 28, 2022
Implementation of Deformable Attention in Pytorch from the paper "Vision Transformer with Deformable Attention"

Deformable Attention Implementation of Deformable Attention from this paper in Pytorch, which appears to be an improvement to what was proposed in DET

Phil Wang 128 Dec 24, 2022
Multi Agent Path Finding Algorithms

MATP-solver Simulator collision check path step random initial states or given states Traditional method Seperate A* algorithem Confict-based Search S

30 Dec 12, 2022