Potato Disease Classification - Training, Rest APIs, and Frontend to test.

Overview

Potato Disease Classification

Setup for Python:

  1. Install Python (Setup instructions)

  2. Install Python packages

pip3 install -r training/requirements.txt
pip3 install -r api/requirements.txt
  1. Install Tensorflow Serving (Setup instructions)

Setup for ReactJS

  1. Install Nodejs (Setup instructions)
  2. Install NPM (Setup instructions)
  3. Install dependencies
cd frontend
npm install --from-lock-json
npm audit fix
  1. Copy .env.example as .env.

  2. Change API url in .env.

Setup for React-Native app

  1. Go to the React Native environment setup, then select React Native CLI Quickstart tab.

  2. Install dependencies

cd mobile-app
yarn install
  • 2.1 Only for mac users
cd ios && pod install && cd ../
  1. Copy .env.example as .env.

  2. Change API url in .env.

Training the Model

  1. Download the data from kaggle.
  2. Only keep folders related to Potatoes.
  3. Run Jupyter Notebook in Browser.
jupyter notebook
  1. Open training/potato-disease-training.ipynb in Jupyter Notebook.
  2. In cell #2, update the path to dataset.
  3. Run all the Cells one by one.
  4. Copy the model generated and save it with the version number in the models folder.

Running the API

Using FastAPI

  1. Get inside api folder
cd api
  1. Run the FastAPI Server using uvicorn
uvicorn main:app --reload --host 0.0.0.0
  1. Your API is now running at 0.0.0.0:8000

Using FastAPI & TF Serve

  1. Get inside api folder
cd api
  1. Copy the models.config.example as models.config and update the paths in file.
  2. Run the TF Serve (Update config file path below)
docker run -t --rm -p 8501:8501 -v C:/Code/potato-disease-classification:/potato-disease-classification tensorflow/serving --rest_api_port=8501 --model_config_file=/potato-disease-classification/models.config
  1. Run the FastAPI Server using uvicorn For this you can directly run it from your main.py or main-tf-serving.py using pycharm run option (as shown in the video tutorial) OR you can run it from command prompt as shown below,
uvicorn main-tf-serving:app --reload --host 0.0.0.0
  1. Your API is now running at 0.0.0.0:8000

Running the Frontend

  1. Get inside api folder
cd frontend
  1. Copy the .env.example as .env and update REACT_APP_API_URL to API URL if needed.
  2. Run the frontend
npm run start

Running the app

  1. Get inside mobile-app folder
cd mobile-app
  1. Copy the .env.example as .env and update URL to API URL if needed.

  2. Run the app (android/iOS)

npm run android

or

npm run ios
  1. Creating public (signed APK)

Creating the TF Lite Model

  1. Run Jupyter Notebook in Browser.
jupyter notebook
  1. Open training/tf-lite-converter.ipynb in Jupyter Notebook.
  2. In cell #2, update the path to dataset.
  3. Run all the Cells one by one.
  4. Model would be saved in tf-lite-models folder.

Deploying the TF Lite on GCP

  1. Create a GCP account.
  2. Create a Project on GCP (Keep note of the project id).
  3. Create a GCP bucket.
  4. Upload the potatoes.h5 model in the bucket in the path models/potatos.h5.
  5. Install Google Cloud SDK (Setup instructions).
  6. Authenticate with Google Cloud SDK.
gcloud auth login
  1. Run the deployment script.
cd gcp
gcloud functions deploy predict_lite --runtime python38 --trigger-http --memory 512 --project project_id
  1. Your model is now deployed.
  2. Use Postman to test the GCF using the Trigger URL.

Inspiration: https://cloud.google.com/blog/products/ai-machine-learning/how-to-serve-deep-learning-models-using-tensorflow-2-0-with-cloud-functions

Deploying the TF Model (.h5) on GCP

  1. Create a GCP account.
  2. Create a Project on GCP (Keep note of the project id).
  3. Create a GCP bucket.
  4. Upload the tf .h5 model generate in the bucket in the path models/potato-model.h5.
  5. Install Google Cloud SDK (Setup instructions).
  6. Authenticate with Google Cloud SDK.
gcloud auth login
  1. Run the deployment script.
cd gcp
gcloud functions deploy predict --runtime python38 --trigger-http --memory 512 --project project_id
  1. Your model is now deployed.
  2. Use Postman to test the GCF using the Trigger URL.

Inspiration: https://cloud.google.com/blog/products/ai-machine-learning/how-to-serve-deep-learning-models-using-tensorflow-2-0-with-cloud-functions

Owner
codebasics
codebasics
This is the official repository for our paper: ''Pruning Self-attentions into Convolutional Layers in Single Path''.

Pruning Self-attentions into Convolutional Layers in Single Path This is the official repository for our paper: Pruning Self-attentions into Convoluti

Zhuang AI Group 77 Dec 26, 2022
Official code for MPG2: Multi-attribute Pizza Generator: Cross-domain Attribute Control with Conditional StyleGAN

This is the official code for Multi-attribute Pizza Generator (MPG2): Cross-domain Attribute Control with Conditional StyleGAN. Paper Demo Setup Envir

Fangda Han 5 Sep 01, 2022
Tensorflow 2.x based implementation of EDSR, WDSR and SRGAN for single image super-resolution

Single Image Super-Resolution with EDSR, WDSR and SRGAN A Tensorflow 2.x based implementation of Enhanced Deep Residual Networks for Single Image Supe

Martin Krasser 1.3k Jan 06, 2023
Adversarial Learning for Semi-supervised Semantic Segmentation, BMVC 2018

Adversarial Learning for Semi-supervised Semantic Segmentation This repo is the pytorch implementation of the following paper: Adversarial Learning fo

Wayne Hung 464 Dec 19, 2022
A mini lib that implements several useful functions binding to PyTorch in C++.

Torch-gather A mini library that implements several useful functions binding to PyTorch in C++. What does gather do? Why do we need it? When dealing w

maxwellzh 8 Sep 07, 2022
Boostcamp AI Tech 3rd / Basic Paper reading w.r.t Embedding

Boostcamp AI Tech 3rd : Basic Paper Reading w.r.t Embedding TL;DR 1992년부터 2018년도까지 이루어진 word/sentence embedding의 중요한 줄기를 이루는 기초 논문 스터디를 진행하고자 합니다. 논

Soyeon Kim 14 Nov 14, 2022
Boston House Prediction Valuation Tool

Boston-House-Prediction-Valuation-Tool From Below Anlaysis The Valuation Tool is Designed Correlation Matrix Regrssion Analysis Between Target Vs Pred

0 Sep 09, 2022
Text to Image Generation with Semantic-Spatial Aware GAN

text2image This repository includes the implementation for Text to Image Generation with Semantic-Spatial Aware GAN This repo is not completely. Netwo

CVDDL 124 Dec 30, 2022
Benchmark for Answering Existential First Order Queries with Single Free Variable

EFO-1-QA Benchmark for First Order Query Estimation on Knowledge Graphs This repository contains an entire pipeline for the EFO-1-QA benchmark. EFO-1

HKUST-KnowComp 14 Oct 24, 2022
Neural Architecture Search Powered by Swarm Intelligence 🐜

Neural Architecture Search Powered by Swarm Intelligence 🐜 DeepSwarm DeepSwarm is an open-source library which uses Ant Colony Optimization to tackle

288 Oct 28, 2022
A curated list of awesome game datasets, and tools to artificial intelligence in games

🎮 Awesome Game Datasets In computer science, Artificial Intelligence (AI) is intelligence demonstrated by machines. Its definition, AI research as th

Leonardo Mauro 454 Jan 03, 2023
PyTorch code for the paper: FeatMatch: Feature-Based Augmentation for Semi-Supervised Learning

FeatMatch: Feature-Based Augmentation for Semi-Supervised Learning This is the PyTorch implementation of our paper: FeatMatch: Feature-Based Augmentat

43 Nov 19, 2022
Simple PyTorch implementations of Badnets on MNIST and CIFAR10.

Simple PyTorch implementations of Badnets on MNIST and CIFAR10.

Vera 75 Dec 13, 2022
A toolkit for controlling Euro Truck Simulator 2 with python to develop self-driving algorithms.

europilot Overview Europilot is an open source project that leverages the popular Euro Truck Simulator(ETS2) to develop self-driving algorithms. A con

1.4k Jan 04, 2023
The easiest tool for extracting radiomics features and training ML models on them.

Simple pipeline for experimenting with radiomics features Installation git clone https://github.com/piotrekwoznicki/ClassyRadiomics.git cd classrad pi

Piotr Woźnicki 17 Aug 04, 2022
Implementation of "Deep Implicit Templates for 3D Shape Representation"

Deep Implicit Templates for 3D Shape Representation Zerong Zheng, Tao Yu, Qionghai Dai, Yebin Liu. arXiv 2020. This repository is an implementation fo

Zerong Zheng 144 Dec 07, 2022
ProMP: Proximal Meta-Policy Search

ProMP: Proximal Meta-Policy Search Implementations corresponding to ProMP (Rothfuss et al., 2018). Overall this repository consists of two branches: m

Jonas Rothfuss 212 Dec 20, 2022
Data and extra materials for the food safety publications classifier

Data and extra materials for the food safety publications classifier The subdirectories contain detailed descriptions of their contents in the README.

1 Jan 20, 2022
A PyTorch implementation of NeRF (Neural Radiance Fields) that reproduces the results.

NeRF-pytorch NeRF (Neural Radiance Fields) is a method that achieves state-of-the-art results for synthesizing novel views of complex scenes. Here are

Yen-Chen Lin 3.2k Jan 08, 2023
EmoTag helps you train emotion detection model for Chinese audios

emoTag emoTag helps you train emotion detection model for Chinese audios. Environment pip install -r requirement.txt Data We used Emotional Speech Dat

_zza 4 Sep 07, 2022