StackGAN: Text to Photo-realistic Image Synthesis with Stacked Generative Adversarial Networks

Related tags

Deep LearningStackGAN
Overview

StackGAN

Tensorflow implementation for reproducing main results in the paper StackGAN: Text to Photo-realistic Image Synthesis with Stacked Generative Adversarial Networks by Han Zhang, Tao Xu, Hongsheng Li, Shaoting Zhang, Xiaogang Wang, Xiaolei Huang, Dimitris Metaxas.

Dependencies

python 2.7

TensorFlow 0.12

[Optional] Torch is needed, if use the pre-trained char-CNN-RNN text encoder.

[Optional] skip-thought is needed, if use the skip-thought text encoder.

In addition, please add the project folder to PYTHONPATH and pip install the following packages:

  • prettytensor
  • progressbar
  • python-dateutil
  • easydict
  • pandas
  • torchfile

Data

  1. Download our preprocessed char-CNN-RNN text embeddings for birds and flowers and save them to Data/.
  • [Optional] Follow the instructions reedscot/icml2016 to download the pretrained char-CNN-RNN text encoders and extract text embeddings.
  1. Download the birds and flowers image data. Extract them to Data/birds/ and Data/flowers/, respectively.
  2. Preprocess images.
  • For birds: python misc/preprocess_birds.py
  • For flowers: python misc/preprocess_flowers.py

Training

  • The steps to train a StackGAN model on the CUB dataset using our preprocessed data for birds.
    • Step 1: train Stage-I GAN (e.g., for 600 epochs) python stageI/run_exp.py --cfg stageI/cfg/birds.yml --gpu 0
    • Step 2: train Stage-II GAN (e.g., for another 600 epochs) python stageII/run_exp.py --cfg stageII/cfg/birds.yml --gpu 1
  • Change birds.yml to flowers.yml to train a StackGAN model on Oxford-102 dataset using our preprocessed data for flowers.
  • *.yml files are example configuration files for training/testing our models.
  • If you want to try your own datasets, here are some good tips about how to train GAN. Also, we encourage to try different hyper-parameters and architectures, especially for more complex datasets.

Pretrained Model

  • StackGAN for birds trained from char-CNN-RNN text embeddings. Download and save it to models/.
  • StackGAN for flowers trained from char-CNN-RNN text embeddings. Download and save it to models/.
  • StackGAN for birds trained from skip-thought text embeddings. Download and save it to models/ (Just used the same setting as the char-CNN-RNN. We assume better results can be achieved by playing with the hyper-parameters).

Run Demos

  • Run sh demo/flowers_demo.sh to generate flower samples from sentences. The results will be saved to Data/flowers/example_captions/. (Need to download the char-CNN-RNN text encoder for flowers to models/text_encoder/. Note: this text encoder is provided by reedscot/icml2016).
  • Run sh demo/birds_demo.sh to generate bird samples from sentences. The results will be saved to Data/birds/example_captions/.(Need to download the char-CNN-RNN text encoder for birds to models/text_encoder/. Note: this text encoder is provided by reedscot/icml2016).
  • Run python demo/birds_skip_thought_demo.py --cfg demo/cfg/birds-skip-thought-demo.yml --gpu 2 to generate bird samples from sentences. The results will be saved to Data/birds/example_captions-skip-thought/. (Need to download vocabulary for skip-thought vectors to Data/skipthoughts/).

Examples for birds (char-CNN-RNN embeddings), more on youtube:

Examples for flowers (char-CNN-RNN embeddings), more on youtube:

Save your favorite pictures generated by our models since the randomness from noise z and conditioning augmentation makes them creative enough to generate objects with different poses and viewpoints from the same discription 😃

Citing StackGAN

If you find StackGAN useful in your research, please consider citing:

@inproceedings{han2017stackgan,
Author = {Han Zhang and Tao Xu and Hongsheng Li and Shaoting Zhang and Xiaogang Wang and Xiaolei Huang and Dimitris Metaxas},
Title = {StackGAN: Text to Photo-realistic Image Synthesis with Stacked Generative Adversarial Networks},
Year = {2017},
booktitle = {{ICCV}},
}

Our follow-up work

References

  • Generative Adversarial Text-to-Image Synthesis Paper Code
  • Learning Deep Representations of Fine-grained Visual Descriptions Paper Code
Owner
Han Zhang
Han Zhang
Isaac Gym Reinforcement Learning Environments

Isaac Gym Reinforcement Learning Environments

NVIDIA Omniverse 714 Jan 08, 2023
Code and models for "Rethinking Deep Image Prior for Denoising" (ICCV 2021)

DIP-denosing This is a code repo for Rethinking Deep Image Prior for Denoising (ICCV 2021). Addressing the relationship between Deep image prior and e

Computer Vision Lab. @ GIST 36 Dec 29, 2022
All supplementary material used by me while TA-ing CS3244: Machine Learning

CS3244-Tutorial-Material All supplementary material used by me while TA-ing CS3244: Machine Learning at NUS School of Computing. What is this? I teach

Rishabh Anand 18 Sep 23, 2022
VIL-100: A New Dataset and A Baseline Model for Video Instance Lane Detection (ICCV 2021)

Preparation Please see dataset/README.md to get more details about our datasets-VIL100 Please see INSTALL.md to install environment and evaluation too

82 Dec 15, 2022
Additional environments compatible with OpenAI gym

Decentralized Control of Quadrotor Swarms with End-to-end Deep Reinforcement Learning A codebase for training reinforcement learning policies for quad

Zhehui Huang 40 Dec 06, 2022
Robot Hacking Manual (RHM). From robotics to cybersecurity. Papers, notes and writeups from a journey into robot cybersecurity.

RHM: Robot Hacking Manual Download in PDF RHM v0.4 ┃ Read online The Robot Hacking Manual (RHM) is an introductory series about cybersecurity for robo

Víctor Mayoral Vilches 233 Dec 30, 2022
Determined: Deep Learning Training Platform

Determined: Deep Learning Training Platform Determined is an open-source deep learning training platform that makes building models fast and easy. Det

Determined AI 2k Dec 31, 2022
This is the dataset and code release of the OpenRooms Dataset.

This is the dataset and code release of the OpenRooms Dataset.

Visual Intelligence Lab of UCSD 95 Jan 08, 2023
Official codebase for running the small, filtered-data GLIDE model from GLIDE: Towards Photorealistic Image Generation and Editing with Text-Guided Diffusion Models.

GLIDE This is the official codebase for running the small, filtered-data GLIDE model from GLIDE: Towards Photorealistic Image Generation and Editing w

OpenAI 2.9k Jan 04, 2023
Learning RAW-to-sRGB Mappings with Inaccurately Aligned Supervision (ICCV 2021)

Learning RAW-to-sRGB Mappings with Inaccurately Aligned Supervision (ICCV 2021) PyTorch implementation of Learning RAW-to-sRGB Mappings with Inaccurat

Zhilu Zhang 53 Dec 20, 2022
This is the code related to "Sparse-to-dense Feature Matching: Intra and Inter domain Cross-modal Learning in Domain Adaptation for 3D Semantic Segmentation" (ICCV 2021).

Sparse-to-dense Feature Matching: Intra and Inter domain Cross-modal Learning in Domain Adaptation for 3D Semantic Segmentation This is the code relat

39 Sep 23, 2022
RoboDesk A Multi-Task Reinforcement Learning Benchmark

RoboDesk A Multi-Task Reinforcement Learning Benchmark If you find this open source release useful, please reference in your paper: @misc{kannan2021ro

Google Research 66 Oct 07, 2022
Decompose to Adapt: Cross-domain Object Detection via Feature Disentanglement

Decompose to Adapt: Cross-domain Object Detection via Feature Disentanglement In this project, we proposed a Domain Disentanglement Faster-RCNN (DDF)

19 Nov 24, 2022
Styled Handwritten Text Generation with Transformers (ICCV 21)

âš¡ Handwriting Transformers [PDF] Ankan Kumar Bhunia, Salman Khan, Hisham Cholakkal, Rao Muhammad Anwer, Fahad Shahbaz Khan & Mubarak Shah Abstract: We

Ankan Kumar Bhunia 85 Dec 22, 2022
Neural Message Passing for Computer Vision

Neural Message Passing for Quantum Chemistry Implementation of different models of Neural Networks on graphs as explained in the article proposed by G

Pau Riba 310 Nov 07, 2022
AI-based, context-driven network device ranking

Batea A batea is a large shallow pan of wood or iron traditionally used by gold prospectors for washing sand and gravel to recover gold nuggets. Batea

Secureworks Taegis VDR 269 Nov 26, 2022
This code uses generative adversarial networks to generate diverse task allocation plans for Multi-agent teams.

Mutli-agent task allocation This code uses generative adversarial networks to generate diverse task allocation plans for Multi-agent teams. To change

Biorobotics Lab 5 Oct 12, 2022
A check for whether the dependency jobs are all green.

alls-green A check for whether the dependency jobs are all green. Why? Do you have more than one job in your GitHub Actions CI/CD workflows setup? Do

Re:actors 33 Jan 03, 2023
Code for Understanding Pooling in Graph Neural Networks

Select, Reduce, Connect This repository contains the code used for the experiments of: "Understanding Pooling in Graph Neural Networks" Setup Install

Daniele Grattarola 37 Dec 13, 2022
TransVTSpotter: End-to-end Video Text Spotter with Transformer

TransVTSpotter: End-to-end Video Text Spotter with Transformer Introduction A Multilingual, Open World Video Text Dataset and End-to-end Video Text Sp

weijiawu 66 Dec 26, 2022