Reverse engineer your pytorch vision models, in style

Related tags

Deep Learningrover
Overview

🔍 Rover

Reverse engineer your CNNs, in style

Open In Colab

Rover will help you break down your CNN and visualize the features from within the model. No need to write weirdly abstract code to visualize your model's features anymore.

💻 Usage

git clone https://github.com/Mayukhdeb/rover.git; cd rover

install requirements:

pip install -r requirements.txt
from rover import core
from rover.default_models import models_dict

core.run(models_dict = models_dict)

and then run the script with streamlit as:

$ streamlit run your_script.py

if everything goes right, you'll see something like:

You can now view your Streamlit app in your browser.

  Local URL: http://localhost:8501

🧙 Custom models

rover supports pretty much any PyTorch model with an input of shape [N, 3, H, W] (even segmentation models/VAEs and all that fancy stuff) with imagenet normalization on input.

import torchvision.models as models 
model = models.resnet34(pretrained= True)  ## or any other model (need not be from torchvision.models)

models_dict = {
    'my model': model,  ## add in any number of models :)
}

core.run(
    models_dict = models_dict
)

🖼️ Channel objective

Optimizes a single channel from one of the layer(s) selected.

  • layer index: specifies which layer you want to use out of the layers selected.
  • channel index: specifies the exact channel which needs to be visualized.

🧙‍♂️ Writing your own objective

This is for the smarties who like to write their own objective function. The only constraint is that the function should be named custom_func.

Here's an example:

def custom_func(layer_outputs):
    '''
    layer_outputs is a list containing 
    the outputs (torch.tensor) of each layer you selected

    In this example we'll try to optimize the following:
    * the entire first layer -> layer_outputs[0].mean()
    * 20th channel of the 2nd layer -> layer_outputs[1][20].mean()
    '''
    loss = layer_outputs[0].mean() + layer_outputs[1][20].mean()
    return -loss

Running on google colab

Check out this notebook. I'll also include the instructions here just in case.

Clone the repo + install dependencies

!git clone https://github.com/Mayukhdeb/rover.git
!pip install torch-dreams --quiet
!pip install streamlit --quiet

Navigate into the repo

import os 
os.chdir('rover')

Write your file into a script from a cell. Here I wrote it into test.py

%%writefile  test.py

from rover import core
from rover.default_models import models_dict

core.run(models_dict = models_dict)

Run script on a thread

import threading

proc = threading.Thread(target= os.system, args=['streamlit run test.py'])
proc.start()

Download ngrok:

!wget https://bin.equinox.io/c/4VmDzA7iaHb/ngrok-stable-linux-amd64.zip
!unzip -o ngrok-stable-linux-amd64.zi

More ngrok stuff

get_ipython().system_raw('./ngrok http 8501 &')

Get your URL where rover is hosted

!curl -s http://localhost:4040/api/tunnels | python3 -c \
    "import sys, json; print(json.load(sys.stdin)['tunnels'][0]['public_url'])"

💻 Args

  • width (int, optional): Width of image to be optimized
  • height (int, optional): Height of image to be optimized
  • iters (int, optional): Number of iterations, higher -> stronger visualization
  • lr (float, optional): Learning rate
  • rotate (deg) (int, optional): Max rotation in default transforms
  • scale max (float, optional): Max image size factor.
  • scale min (float, optional): Minimum image size factor.
  • translate (x) (float, optional): Maximum translation factor in x direction
  • translate (y) (float, optional): Maximum translation factor in y direction
  • weight decay (float, optional): Weight decay for default optimizer. Helps prevent high frequency noise.
  • gradient clip (float, optional): Maximum value of the norm of gradient.

Run locally

Clone the repo

git clone https://github.com/Mayukhdeb/rover.git

install requirements

pip install -r requirements.txt

showtime

streamlit run test.py
Owner
Mayukh Deb
Learning about life, one epoch at a time
Mayukh Deb
WaveFake: A Data Set to Facilitate Audio DeepFake Detection

WaveFake: A Data Set to Facilitate Audio DeepFake Detection This is the code repository for our NeurIPS 2021 (Track on Datasets and Benchmarks) paper

Chair for Sys­tems Se­cu­ri­ty 27 Dec 22, 2022
Automatically erase objects in the video, such as logo, text, etc.

Video-Auto-Wipe Read English Introduction:Here   本人不定期的基于生成技术制作一些好玩有趣的算法模型,这次带来的作品是“视频擦除”方向的应用模型,它实现的功能是自动感知到视频中我们不想看见的部分(譬如广告、水印、字幕、图标等等)然后进行擦除。由于图标擦

seeprettyface.com 141 Dec 26, 2022
Devkit for 3D -- Some utils for 3D object detection based on Numpy and Pytorch

D3D Devkit for 3D: Some utils for 3D object detection and tracking based on Numpy and Pytorch Please consider siting my work if you find this library

Jacob Zhong 27 Jul 07, 2022
This repository is a basic Machine Learning train & validation Template (Using PyTorch)

pytorch_ml_template This repository is a basic Machine Learning train & validation Template (Using PyTorch) TODO Markdown 사용법 Build Docker 사용법 Anacond

1 Sep 15, 2022
A flexible ML framework built to simplify medical image reconstruction and analysis experimentation.

meddlr Getting Started Meddlr is a config-driven ML framework built to simplify medical image reconstruction and analysis problems. Installation To av

Arjun Desai 36 Dec 16, 2022
MVFNet: Multi-View Fusion Network for Efficient Video Recognition (AAAI 2021)

MVFNet: Multi-View Fusion Network for Efficient Video Recognition (AAAI 2021) Overview We release the code of the MVFNet (Multi-View Fusion Network).

2 Jan 29, 2022
Pointer networks Tensorflow2

Pointer networks Tensorflow2 原文:https://arxiv.org/abs/1506.03134 仅供参考与学习,内含代码备注 环境 tensorflow==2.6.0 tqdm matplotlib numpy 《pointer networks》阅读笔记 应用场景

HUANG HAO 7 Oct 27, 2022
1st-in-MICCAI2020-CPM - Combined Radiology and Pathology Classification

Combined Radiology and Pathology Classification MICCAI 2020 Combined Radiology a

22 Dec 08, 2022
Einshape: DSL-based reshaping library for JAX and other frameworks.

Einshape: DSL-based reshaping library for JAX and other frameworks. The jnp.einsum op provides a DSL-based unified interface to matmul and tensordot o

DeepMind 62 Nov 30, 2022
Code for the paper "Generative design of breakwaters usign deep convolutional neural network as a surrogate model"

Generative design of breakwaters usign deep convolutional neural network as a surrogate model This repository contains the code for the paper "Generat

2 Apr 10, 2022
Enhancing Column Generation by a Machine-Learning-BasedPricing Heuristic for Graph Coloring

Enhancing Column Generation by a Machine-Learning-BasedPricing Heuristic for Graph Coloring (to appear at AAAI 2022) We propose a machine-learning-bas

YunzhuangS 2 May 02, 2022
Repo for "TableParser: Automatic Table Parsing with Weak Supervision from Spreadsheets" at [email protected]

TableParser Repo for "TableParser: Automatic Table Parsing with Weak Supervision from Spreadsheets" at DS3 Lab 11 Dec 13, 2022

Simple tutorials using Google's TensorFlow Framework

TensorFlow-Tutorials Introduction to deep learning based on Google's TensorFlow framework. These tutorials are direct ports of Newmu's Theano Tutorial

Nathan Lintz 6k Jan 06, 2023
D2Go is a toolkit for efficient deep learning

D2Go D2Go is a production ready software system from FacebookResearch, which supports end-to-end model training and deployment for mobile platforms. W

Facebook Research 744 Jan 04, 2023
Hypernetwork-Ensemble Learning of Segmentation Probability for Medical Image Segmentation with Ambiguous Labels

Hypernet-Ensemble Learning of Segmentation Probability for Medical Image Segmentation with Ambiguous Labels The implementation of Hypernet-Ensemble Le

Sungmin Hong 6 Jul 18, 2022
NOMAD - A blackbox optimization software

################################################################################### #

Blackbox Optimization 78 Dec 29, 2022
VOGUE: Try-On by StyleGAN Interpolation Optimization

VOGUE is a StyleGAN interpolation optimization algorithm for photo-realistic try-on. Top: shirt try-on automatically synthesized by our method in two different examples.

Wei ZHANG 66 Dec 09, 2022
This is the code repository implementing the paper "TreePartNet: Neural Decomposition of Point Clouds for 3D Tree Reconstruction".

TreePartNet This is the code repository implementing the paper "TreePartNet: Neural Decomposition of Point Clouds for 3D Tree Reconstruction". Depende

刘彦超 34 Nov 30, 2022
Code for paper: Towards Tokenized Human Dynamics Representation

Video Tokneization Codebase for video tokenization, based on our paper Towards Tokenized Human Dynamics Representation. Prerequisites (tested under Py

Kenneth Li 20 May 31, 2022