Pytorch Performace Tuning, WandB, AMP, Multi-GPU, TensorRT, Triton

Overview

Plant Pathology 2020 FGVC7

Introduction

A deep learning model pipeline for training, experimentaiton and deployment for the Kaggle Competition, Plant Pathology 2020, utilising:

  • PyTorch: A Deep Learning Framework for high-performance AI research
  • Weights and Biases: tool for experiment tracking, dataset versioning, and model management
  • Apex: A Library to Accelerate Deep Learning Training using AMP, Fused Optimizer, and Multi-GPU
  • TensorRT: high-performance neural network inference optimizer and runtime engine for production deployment
  • Triton Inference Server: inference serving software that simplifies the deployment of AI models at scale
  • Streamlit: framework to quickly build highly interactive web applications for machine learning models

For a quick tutorial about all these modules, check out tutorials folder. Exploratory data analysis for the same can also be found in the notebooks folder.

Structure

├── app                 # Interactive Streamlit app scripts
├── data                # Datasets
├── examples            # assignment on pytorch amp and ddp
├── model               # Directory to save models for triton
├── notebooks           # EDA, Training, Model conversion, Inferencing and other utility notebooks
├── tutorials           # Tutorials on the modules used
└── requirements.txt    # Basic requirements

Usage

EDA: Data Evaluation

Data can be explored with various visualization techniques provided in eda.ipyb notebooks folder

Training the model

To run the pytorch resnet50 model use pytorch_train.ipynb.

The code is inspired by Pytorch Performance Tuning Guide

Once the model is trained, you can even run model explainabilty using the shap library. The tutorial notebook for the same can be found in the notebooks folder.

Model Conversion and Inferencing

Once you've trained the model, you will need to convert it to different formats in order to have a faster inference time as well as easily deploy them. You can convert the model to ONNX, TensorRT FP32 and TensorRT FP16 formats which are optimised to run faster inference. You will also need to convert the PyTorch model to TorchScript. Procedure for converting and benchmarking all the different formats of the model can be found in notebooks folder.

Model Deployment and Benchmarking

Now your models are ready to be deployed. For deployment, we utilise the Triton Inference Server. It provides an inferencing solution for deep learning models to be easily deployed and integrated with various functionalities. It supports HTTP and gRPC protocol that allows clients to request for inferencing, utilising any model of choice being managed by the server. The process of deployment can be found in Triton Inference Server.md.

Once your inferencing server is up and running, the next step it to understand as well as optimise the model performance. For this purpose, you can utilise tools like perf_analyzer which helps you measure changes in performance as you experiment with different parameters.

Interactive Web App

To run the Streamlit app:

cd app/
streamlit app.py

This will create a local server on which you can view the web application. This app contains the client side for the Triton Inference Server, along with an easy to use GUI.

Acknowledgement

This repository is built with references and code snippets from the NN Template by Luca Moschella.

Owner
Bharat Giddwani
B.Tech Graduate || Deep learning/ machine learning enthusiast. A passionate/avid learner.
Bharat Giddwani
This is the official implementation of Elaborative Rehearsal for Zero-shot Action Recognition (ICCV2021)

Elaborative Rehearsal for Zero-shot Action Recognition This is an official implementation of: Shizhe Chen and Dong Huang, Elaborative Rehearsal for Ze

DeLightCMU 26 Sep 24, 2022
Joint project of the duo Hacker Ninjas

Project Smoothie Společný projekt dua Hacker Ninjas. První pokus o hříčku po třech týdnech učení se programování. Jakub Kolář e:\

Jakub Kolář 2 Jan 07, 2022
automatic color-grading

color-matcher Description color-matcher enables color transfer across images which comes in handy for automatic color-grading of photographs, painting

hahnec 168 Jan 05, 2023
StyleGAN2-ADA-training-jupyter - Training custom datasets in styleGAN2-ADA by NVIDIA using Jupyter

styleGAN2-ADA-training-jupyter Training custom datasets in styleGAN2-ADA on Jupyter Official StyleGAN2-ADA by NIVIDIA Paper Training Generative Advers

Mang Su Hyun 2 Feb 24, 2022
RSNA Intracranial Hemorrhage Detection with python

RSNA Intracranial Hemorrhage Detection This is the source code for the first place solution to the RSNA2019 Intracranial Hemorrhage Detection Challeng

24 Nov 30, 2022
A Low Complexity Speech Enhancement Framework for Full-Band Audio (48kHz) based on Deep Filtering.

DeepFilterNet A Low Complexity Speech Enhancement Framework for Full-Band Audio (48kHz) based on Deep Filtering. libDF contains Rust code used for dat

Hendrik Schröter 292 Dec 25, 2022
Code for reproducing our paper: LMSOC: An Approach for Socially Sensitive Pretraining

LMSOC: An Approach for Socially Sensitive Pretraining Code for reproducing the paper LMSOC: An Approach for Socially Sensitive Pretraining to appear a

Twitter Research 11 Dec 20, 2022
Sound Event Detection with FilterAugment

Sound Event Detection with FilterAugment Official implementation of Heavily Augmented Sound Event Detection utilizing Weak Predictions (DCASE2021 Chal

43 Aug 28, 2022
The code release of paper Low-Light Image Enhancement with Normalizing Flow

[AAAI 2022] Low-Light Image Enhancement with Normalizing Flow Paper | Project Page Low-Light Image Enhancement with Normalizing Flow Yufei Wang, Renji

Yufei Wang 176 Jan 06, 2023
OBBDetection is a oriented object detection library, which is based on MMdetection.

OBBDetection news: We are now updating OBBDetection to new vision based on MMdetection v2.10, which has more advanced models and more efficient featur

jbwang1997 401 Jan 02, 2023
Code for How To Create A Fully Automated AI Based Trading System With Python

AI Based Trading System This code works as a boilerplate for an AI based trading system with yfinance as data source and RobinHood or Alpaca as broker

Rubén 196 Jan 05, 2023
Non-Attentive-Tacotron - This is Pytorch Implementation of Google's Non-attentive Tacotron.

Non-attentive Tacotron - PyTorch Implementation This is Pytorch Implementation of Google's Non-attentive Tacotron, text-to-speech system. There is som

Jounghee Kim 46 Dec 19, 2022
DeepProbLog is an extension of ProbLog that integrates Probabilistic Logic Programming with deep learning by introducing the neural predicate.

DeepProbLog DeepProbLog is an extension of ProbLog that integrates Probabilistic Logic Programming with deep learning by introducing the neural predic

KU Leuven Machine Learning Research Group 94 Dec 18, 2022
Towards Interpretable Deep Metric Learning with Structural Matching

DIML Created by Wenliang Zhao*, Yongming Rao*, Ziyi Wang, Jiwen Lu, Jie Zhou This repository contains PyTorch implementation for paper Towards Interpr

Wenliang Zhao 75 Nov 11, 2022
StyleGAN of All Trades: Image Manipulation withOnly Pretrained StyleGAN

StyleGAN of All Trades: Image Manipulation withOnly Pretrained StyleGAN This is the PyTorch implementation of StyleGAN of All Trades: Image Manipulati

360 Dec 28, 2022
bio_inspired_min_nets_improve_the_performance_and_robustness_of_deep_networks

Code Submission for: Bio-inspired Min-Nets Improve the Performance and Robustness of Deep Networks Run with docker To build a docker environment, chan

0 Dec 09, 2021
Leaderboard, taxonomy, and curated list of few-shot object detection papers.

Leaderboard, taxonomy, and curated list of few-shot object detection papers.

Gabriel Huang 70 Jan 07, 2023
Reproducing code of hair style replacement method from Barbershorp.

Barbershorp Reproducing code of hair style replacement method from Barbershorp. Also reproduces II2S, an improved version of Image2StyleGAN. Requireme

1 Dec 24, 2021
Contains modeling practice materials and homework for the Computational Neuroscience course at Okinawa Institute of Science and Technology

A310 Computational Neuroscience - Okinawa Institute of Science and Technology, 2022 This repository contains modeling practice materials and homework

Sungho Hong 1 Jan 24, 2022
PyTorch implementation of paper: AdaAttN: Revisit Attention Mechanism in Arbitrary Neural Style Transfer, ICCV 2021.

AdaAttN: Revisit Attention Mechanism in Arbitrary Neural Style Transfer [Paper] [PyTorch Implementation] [Paddle Implementation] Overview This reposit

148 Dec 30, 2022