Pytorch Performace Tuning, WandB, AMP, Multi-GPU, TensorRT, Triton

Overview

Plant Pathology 2020 FGVC7

Introduction

A deep learning model pipeline for training, experimentaiton and deployment for the Kaggle Competition, Plant Pathology 2020, utilising:

  • PyTorch: A Deep Learning Framework for high-performance AI research
  • Weights and Biases: tool for experiment tracking, dataset versioning, and model management
  • Apex: A Library to Accelerate Deep Learning Training using AMP, Fused Optimizer, and Multi-GPU
  • TensorRT: high-performance neural network inference optimizer and runtime engine for production deployment
  • Triton Inference Server: inference serving software that simplifies the deployment of AI models at scale
  • Streamlit: framework to quickly build highly interactive web applications for machine learning models

For a quick tutorial about all these modules, check out tutorials folder. Exploratory data analysis for the same can also be found in the notebooks folder.

Structure

├── app                 # Interactive Streamlit app scripts
├── data                # Datasets
├── examples            # assignment on pytorch amp and ddp
├── model               # Directory to save models for triton
├── notebooks           # EDA, Training, Model conversion, Inferencing and other utility notebooks
├── tutorials           # Tutorials on the modules used
└── requirements.txt    # Basic requirements

Usage

EDA: Data Evaluation

Data can be explored with various visualization techniques provided in eda.ipyb notebooks folder

Training the model

To run the pytorch resnet50 model use pytorch_train.ipynb.

The code is inspired by Pytorch Performance Tuning Guide

Once the model is trained, you can even run model explainabilty using the shap library. The tutorial notebook for the same can be found in the notebooks folder.

Model Conversion and Inferencing

Once you've trained the model, you will need to convert it to different formats in order to have a faster inference time as well as easily deploy them. You can convert the model to ONNX, TensorRT FP32 and TensorRT FP16 formats which are optimised to run faster inference. You will also need to convert the PyTorch model to TorchScript. Procedure for converting and benchmarking all the different formats of the model can be found in notebooks folder.

Model Deployment and Benchmarking

Now your models are ready to be deployed. For deployment, we utilise the Triton Inference Server. It provides an inferencing solution for deep learning models to be easily deployed and integrated with various functionalities. It supports HTTP and gRPC protocol that allows clients to request for inferencing, utilising any model of choice being managed by the server. The process of deployment can be found in Triton Inference Server.md.

Once your inferencing server is up and running, the next step it to understand as well as optimise the model performance. For this purpose, you can utilise tools like perf_analyzer which helps you measure changes in performance as you experiment with different parameters.

Interactive Web App

To run the Streamlit app:

cd app/
streamlit app.py

This will create a local server on which you can view the web application. This app contains the client side for the Triton Inference Server, along with an easy to use GUI.

Acknowledgement

This repository is built with references and code snippets from the NN Template by Luca Moschella.

Owner
Bharat Giddwani
B.Tech Graduate || Deep learning/ machine learning enthusiast. A passionate/avid learner.
Bharat Giddwani
An easy way to build PyTorch datasets. Modularly build datasets and automatically cache processed results

EasyDatas An easy way to build PyTorch datasets. Modularly build datasets and automatically cache processed results Installation pip install git+https

Ximing Yang 4 Dec 14, 2021
A comprehensive and up-to-date developer education platform for Urbit.

curriculum A comprehensive and up-to-date developer education platform for Urbit. This project organizes developer capabilities into a hierarchy of co

Sigilante 36 Oct 04, 2022
PyTorch implementation of our ICCV paper DeFRCN: Decoupled Faster R-CNN for Few-Shot Object Detection.

Introduction This repo contains the official PyTorch implementation of our ICCV paper DeFRCN: Decoupled Faster R-CNN for Few-Shot Object Detection. Up

133 Dec 29, 2022
Trafffic prediction analysis using hybrid models - Machine Learning

Hybrid Machine learning Model Clone the Repository Create a new Directory as assests and download the model from the below link Model Link To Start th

1 Feb 08, 2022
Code implementing "Improving Deep Learning Interpretability by Saliency Guided Training"

Saliency Guided Training Code implementing "Improving Deep Learning Interpretability by Saliency Guided Training" by Aya Abdelsalam Ismail, Hector Cor

8 Sep 22, 2022
Aalto-cs-msc-theses - Listing of M.Sc. Theses of the Department of Computer Science at Aalto University

Aalto-CS-MSc-Theses Listing of M.Sc. Theses of the Department of Computer Scienc

Jorma Laaksonen 3 Jan 27, 2022
Code for 1st place solution in Sleep AI Challenge SNU Hospital

Sleep AI Challenge SNU Hospital 2021 Code for 1st place solution for Sleep AI Challenge (Note that the code is not fully organized) Refer to the notio

Saewon Yang 13 Jan 03, 2022
Self-Supervised Image Denoising via Iterative Data Refinement

Self-Supervised Image Denoising via Iterative Data Refinement Yi Zhang1, Dasong Li1, Ka Lung Law2, Xiaogang Wang1, Hongwei Qin2, Hongsheng Li1 1CUHK-S

Zhang Yi 72 Jan 01, 2023
AI grand challenge 2020 Repo (Speech Recognition Track)

KorBERT를 활용한 한국어 텍스트 기반 위협 상황인지(2020 인공지능 그랜드 챌린지) 본 프로젝트는 ETRI에서 제공된 한국어 korBERT 모델을 활용하여 폭력 기반 한국어 텍스트를 분류하는 다양한 분류 모델들을 제공합니다. 본 개발자들이 참여한 2020 인공지

Young-Seok Choi 23 Jan 25, 2022
π-GAN: Periodic Implicit Generative Adversarial Networks for 3D-Aware Image Synthesis

π-GAN: Periodic Implicit Generative Adversarial Networks for 3D-Aware Image Synthesis Project Page | Paper | Data Eric Ryan Chan*, Marco Monteiro*, Pe

375 Dec 31, 2022
Source code of D-HAN: Dynamic News Recommendation with Hierarchical Attention Network

D-HAN The source code of D-HAN This is the source code of D-HAN: Dynamic News Recommendation with Hierarchical Attention Network. However, only the co

30 Sep 22, 2022
A package, and script, to perform imaging transcriptomics on a neuroimaging scan.

Imaging Transcriptomics Imaging transcriptomics is a methodology that allows to identify patterns of correlation between gene expression and some prop

Alessio Giacomel 10 Dec 27, 2022
Caffe models in TensorFlow

Caffe to TensorFlow Convert Caffe models to TensorFlow. Usage Run convert.py to convert an existing Caffe model to TensorFlow. Make sure you're using

Saumitro Dasgupta 2.8k Dec 31, 2022
Machine Learning in Asset Management (by @firmai)

Machine Learning in Asset Management If you like this type of content then visit ML Quant site below: https://www.ml-quant.com/ Part One Follow this l

Derek Snow 1.5k Jan 02, 2023
Hand Gesture Volume Control | Open CV | Computer Vision

Gesture Volume Control Hand Gesture Volume Control | Open CV | Computer Vision Use gesture control to change the volume of a computer. First we look i

Jhenil Parihar 3 Jun 15, 2022
Code for NeurIPS 2021 paper: Invariant Causal Imitation Learning for Generalizable Policies

Invariant Causal Imitation Learning for Generalizable Policies Ioana Bica, Daniel Jarrett, Mihaela van der Schaar Neural Information Processing System

Ioana Bica 17 Dec 01, 2022
YOLOv3 in PyTorch > ONNX > CoreML > TFLite

This repository represents Ultralytics open-source research into future object detection methods, and incorporates lessons learned and best practices

Ultralytics 9.3k Jan 07, 2023
Aspect-Sentiment-Multiple-Opinion Triplet Extraction (NLPCC 2021)

The code and data for the paper "Aspect-Sentiment-Multiple-Opinion Triplet Extraction" Requirements Python 3.6.8 torch==1.2.0 pytorch-transformers==1.

慢半拍 5 Jul 02, 2022
Speeding-Up Back-Propagation in DNN: Approximate Outer Product with Memory

Approximate Outer Product Gradient Descent with Memory Code for the numerical experiment of the paper Speeding-Up Back-Propagation in DNN: Approximate

2 Mar 02, 2022
PyTorch implementation of "Continual Learning with Deep Generative Replay", NIPS 2017

pytorch-deep-generative-replay PyTorch implementation of Continual Learning with Deep Generative Replay, NIPS 2017 Results Continual Learning on Permu

Junsoo Ha 127 Dec 14, 2022