Image Segmentation with U-Net Algorithm on Carvana Dataset using AWS Sagemaker

Overview

Image Segmentation with U-Net Algorithm on Carvana Dataset using AWS Sagemaker

This is a full project of image segmentation using the model built with U-Net Algorithm on Carvana competition Dataset from Kaggle using Sagemaker as Udacity's ML Nanodegree Capstone Project.

Image Segmentation with U-Net Algorithm

Use AWS Sagemaker to train the model built with U-Net algorithm/architecture that can perform image segmentation on Carvana Dataset from Kaggle Competition.

Project Set Up and Installation

Enter AWS through the gateway and create a Sagemaker notebook instance of your choice, ml.t2.medium is a sweet spot for this project as we will not use the GPU in the notebook and will use the Sagemaker Container to train the model. Wait for the instance to launch and then create a jupyter notebook with conda_pytorch_latest_p36 kernel, this comes preinstalled with the needed modules related to pytorch we will use along the project. Set up your sagemaker roles and regions.

Dataset

We use the Carvana Dataset from Kaggle Competition to use as data for the model training job. To get the Dataset. Register or Login to your Kaggle account, create new api in the user setting and get the api key and put it in the root of your sagemaker environment root location. After that !kaggle competitions download carvana-image-masking-challenge -f train.zip and !kaggle competitions download carvana-image-masking-challenge -f train_masks.zip will download the necessary files to your notebook environment. We will then unzip the data, upload it to S3 bucket with !aws s3 sync command.

Script Files used

  1. hpo.py for hyperparameter tuning jobs where we train the model for multiple time with different hyperparameters and search for the best combination based on loss metrics.
  2. training.py for the final training of the model with the best parameters getting from the previous tuning jobs, and put debug and profiler hooks for debugging purpose and get the tensors emits during training.
  3. inference.py for using the trained model as inference and pre-processing and serializing the data before it passes to the model for segmentaion. Now this can be used locally and user friendly
  4. Note at this time, the sagemaker endpoint has an error and can't make prediction, so I have managed to create a new instance in sagemaker(ml.g4dn.xlarge to utilize the GPU) and used endpoint_local.ipynb notebook to get the inference result.
  5. requirements.txt is use to install the dependencies in the training container, these include Albumentations, higher version of torch dependencies to utilize in the training script.

Hyperparameter Tuning

I used U-Net Algorithm to create an image segmentation model. The hyperparameter searchspaces are learning-rate, number of epochs and batchsize. Note The batch size over 128(inclusive) can't be used as the GPU memory may run out during the training. Deploy a hyperparameter tuning job on sagemaker and wait for the combination of hyperparameters turn out with best metric.

hyperparameter tuning job

We pick the hyperparameters from the best training job to train the final model.

best job's hyperparameters

Debugging and Profiling

The Debugger Hook is set to record the Loss Criterion of the process in both training and validation/testing. The Plot of the Dice Coefficient is shown below.

Dice Coefficient

we can see that the validation plot is high and this means that our model had entered a state of overtraining. We can reduce this by adding dropout or L1 L2 regularization, or added more different training data, or can early stop the model before it overfit. by adding the metric definition, I could also managed to get the average accuracy and loss dat during the validation phase in AWS Cloudwatch(a powerful too to monitor your metrics of any kind). Metrics

Results

Result is pretty good, as I was using ml.g4dn.xlarge to utilize the GPU of the instance, both the hpo jobs and training job did't take too much time.

Inferenceing your data

Sagemaker Endpoint got an 500 status code error so I tried using another sagemaker instance with GPU(ml.g4dn.xlarge) and running the endpoint_local.ipynb will get you the desired output of your choice. Result

Thank You So Much For Your Time! Please don't hesitate to contribute.

Ref: Github repo of neirinzaralwin

Owner
Htin Aung Lu
I am a Machine Learning enginner. I like to work on various machine learning projects. I have more experience on @AWS @Sagemaker platform than other.
Htin Aung Lu
This is a Pytorch implementation of paper: DropEdge: Towards Deep Graph Convolutional Networks on Node Classification

DropEdge: Towards Deep Graph Convolutional Networks on Node Classification This is a Pytorch implementation of paper: DropEdge: Towards Deep Graph Con

401 Dec 16, 2022
Mitsuba 2: A Retargetable Forward and Inverse Renderer

Mitsuba Renderer 2 Documentation Mitsuba 2 is a research-oriented rendering system written in portable C++17. It consists of a small set of core libra

Mitsuba Physically Based Renderer 2k Jan 07, 2023
An interpreter for RASP as described in the ICML 2021 paper "Thinking Like Transformers"

RASP Setup Mac or Linux Run ./setup.sh . It will create a python3 virtual environment and install the dependencies for RASP. It will also try to insta

141 Jan 03, 2023
PyTorch Implementation of the paper Learning to Reweight Examples for Robust Deep Learning

Learning to Reweight Examples for Robust Deep Learning Unofficial PyTorch implementation of Learning to Reweight Examples for Robust Deep Learning. Th

Daniel Stanley Tan 325 Dec 28, 2022
The Unreasonable Effectiveness of Random Pruning: Return of the Most Naive Baseline for Sparse Training

[ICLR 2022] The Unreasonable Effectiveness of Random Pruning: Return of the Most Naive Baseline for Sparse Training The Unreasonable Effectiveness of

VITA 44 Dec 23, 2022
Kinetics-Data-Preprocessing

Kinetics-Data-Preprocessing Kinetics-400 and Kinetics-600 are common video recognition datasets used by popular video understanding projects like Slow

Kaihua Tang 7 Oct 27, 2022
[ICLR 2021] HW-NAS-Bench: Hardware-Aware Neural Architecture Search Benchmark

HW-NAS-Bench: Hardware-Aware Neural Architecture Search Benchmark Accepted as a spotlight paper at ICLR 2021. Table of content File structure Prerequi

72 Jan 03, 2023
A Fast Sequence Transducer Implementation with PyTorch Bindings

transducer A Fast Sequence Transducer Implementation with PyTorch Bindings. The corresponding publication is Sequence Transduction with Recurrent Neur

Awni Hannun 184 Dec 18, 2022
ATAC: Adversarially Trained Actor Critic

ATAC: Adversarially Trained Actor Critic Adversarially Trained Actor Critic for Offline Reinforcement Learning by Ching-An Cheng*, Tengyang Xie*, Nan

Microsoft 41 Dec 08, 2022
Proposal, Tracking and Segmentation (PTS): A Cascaded Network for Video Object Segmentation

Proposal, Tracking and Segmentation (PTS): A Cascaded Network for Video Object Segmentation By Qiang Zhou*, Zilong Huang*, Lichao Huang, Han Shen, Yon

Forest 117 Apr 01, 2022
Official implementation of the paper 'Efficient and Degradation-Adaptive Network for Real-World Image Super-Resolution'

DASR Paper Efficient and Degradation-Adaptive Network for Real-World Image Super-Resolution Jie Liang, Hui Zeng, and Lei Zhang. In arxiv preprint. Abs

81 Dec 28, 2022
Exploit ILP to learn symmetry breaking constraints of ASP programs.

ILP Symmetry Breaking Overview This project aims to exploit inductive logic programming to lift symmetry breaking constraints of ASP programs. Given a

Research Group Production Systems 1 Apr 13, 2022
UniFormer - official implementation of UniFormer

UniFormer This repo is the official implementation of "Uniformer: Unified Transf

SenseTime X-Lab 573 Jan 04, 2023
ZeroVL - The official implementation of ZeroVL

This repository contains source code necessary to reproduce the results presente

31 Nov 04, 2022
Official implementation of cosformer-attention in cosFormer: Rethinking Softmax in Attention

cosFormer Official implementation of cosformer-attention in cosFormer: Rethinking Softmax in Attention Update log 2022/2/28 Add core code License This

120 Dec 15, 2022
Multimodal Temporal Context Network (MTCN)

Multimodal Temporal Context Network (MTCN) This repository implements the model proposed in the paper: Evangelos Kazakos, Jaesung Huh, Arsha Nagrani,

Evangelos Kazakos 13 Nov 24, 2022
Classical OCR DCNN reproduction based on PaddlePaddle framework.

Paddle-SVHN Classical OCR DCNN reproduction based on PaddlePaddle framework. This project reproduces Multi-digit Number Recognition from Street View I

1 Nov 12, 2021
[AAAI22] Reliable Propagation-Correction Modulation for Video Object Segmentation

Reliable Propagation-Correction Modulation for Video Object Segmentation (AAAI22) Preview version paper of this work is available at: https://arxiv.or

Xiaohao Xu 70 Dec 04, 2022
Simple Text-Generator with OpenAI gpt-2 Pytorch Implementation

GPT2-Pytorch with Text-Generator Better Language Models and Their Implications Our model, called GPT-2 (a successor to GPT), was trained simply to pre

Tae-Hwan Jung 775 Jan 08, 2023
Source code for Zalo AI 2021 submission

zalo_ltr_2021 Source code for Zalo AI 2021 submission Solution: Pipeline We use the pipepline in the picture below: Our pipeline is combination of BM2

128 Dec 27, 2022