Imitating Deep Learning Dynamics via Locally Elastic Stochastic Differential Equations

Related tags

Deep Learningle_sde
Overview

Imitating Deep Learning Dynamics via Locally Elastic Stochastic Differential Equations

This repo contains official code for the NeurIPS 2021 paper Imitating Deep Learning Dynamics via Locally Elastic Stochastic Differential Equations by Jiayao Zhang, Hua Wang, Weijie J. Su.

Discussions welcome, please submit via Discussions. You can also read the reviews on OpenReview.

@misc{zhang2021imitating,
      title={Imitating Deep Learning Dynamics via Locally Elastic Stochastic Differential Equations}, 
      author={Jiayao Zhang and Hua Wang and Weijie J. Su},
      year={2021},
      eprint={2110.05960},
      archivePrefix={arXiv},
      primaryClass={cs.LG}
}

Reproducing Experiments

Dependencies

We use Python 3.8 and pytorch for training neural nets, please use pip install -r requirements.txt (potentially in a virtual environment) to install dependencies.

Datasets

We use a dataset of geometric shapes (GeoMNIST) we constructed as well as CIFAR-10. GeoMNIST is lightweighted and will be generated when simulation runs; CIFAR-10 will be downloaded from torchvision.

Code Structure

After instsalling the dependencies, one may navigate through the two Jupyter notebooks for running experiments and producing plots and figures. Below we outline the code structure.

.
├── LICENSE                         # code license
├── README.md                       # this file
├── LE-SDE Data Analysis.ipynb      # reproducing plots and figures
├── LE-SDE Experiments.ipynb        # reproducing experiments
└── src                         # source code
    ├── data_analyzer.py            # processing experiment data
    ├── datasets.py                 # generating and loading datasets
    ├── models.py                   # definition of neural net models
    ├── plotter.py                  # generating plots and figures
    └── utils.py                    # utilities, including training pipelines
└── exp_data                    # experiment data
    ├── *.csv                       # dataframes from neural net training
    └── *.npy                       # numpy.ndarray storing LE-ODE simulations

More info regarding npy files can be found in the numpy documentation.

Reproducing Figures

Experiment Data

Although all simulations can be run on your machine, it is quite time-consuming. Data from our experiments can be downloaded from the following anonymous Dropbox links:

After downloading those tarballs, extract them into ./exp_data (or change the EXP_DIR variable in the notebooks accordingly).

Plotter

Once experiment data are ready, simply follow LE-SDE Data Analysis.ipynb for reproducing all figures.

Owner
Jiayao Zhang
Ph.D. Student at UPenn
Jiayao Zhang
Paper: De-rendering Stylized Texts

Paper: De-rendering Stylized Texts Wataru Shimoda1, Daichi Haraguchi2, Seiichi Uchida2, Kota Yamaguchi1 1CyberAgent.Inc, 2 Kyushu University Accepted

CyberAgent AI Lab 55 Dec 18, 2022
This code provides a PyTorch implementation for OTTER (Optimal Transport distillation for Efficient zero-shot Recognition), as described in the paper.

Data Efficient Language-Supervised Zero-Shot Recognition with Optimal Transport Distillation This repository contains PyTorch evaluation code, trainin

Meta Research 45 Dec 20, 2022
PyTorch implementation of "Simple and Deep Graph Convolutional Networks"

Simple and Deep Graph Convolutional Networks This repository contains a PyTorch implementation of "Simple and Deep Graph Convolutional Networks".(http

chenm 253 Dec 08, 2022
A2LP for short, ECCV2020 spotlight, Investigating SSL principles for UDA problems

Label-Propagation-with-Augmented-Anchors (A2LP) Official codes of the ECCV2020 spotlight (label propagation with augmented anchors: a simple semi-supe

20 Oct 27, 2022
Image Classification - A research on image classification and auto insurance claim prediction, a systematic experiments on modeling techniques and approaches

A research on image classification and auto insurance claim prediction, a systematic experiments on modeling techniques and approaches

0 Jan 23, 2022
[ICCV 2021] Official Tensorflow Implementation for "Single Image Defocus Deblurring Using Kernel-Sharing Parallel Atrous Convolutions"

KPAC: Kernel-Sharing Parallel Atrous Convolutional block This repository contains the official Tensorflow implementation of the following paper: Singl

Hyeongseok Son 50 Dec 29, 2022
Music library streaming app written in Flask & VueJS

djtaytay This is a little toy app made to explore Vue, brush up on my Python, and make a remote music collection accessable through a web interface. I

Ryan Tasson 6 May 27, 2022
Data-Uncertainty Guided Multi-Phase Learning for Semi-supervised Object Detection

An official implementation of paper Data-Uncertainty Guided Multi-Phase Learning for Semi-supervised Object Detection

11 Nov 23, 2022
A simple Rock-Paper-Scissors game using CV in python

ML18_Rock-Paper-Scissors-using-CV A simple Rock-Paper-Scissors game using CV in python For IITISOC-21 Rules and procedure to play the interactive game

Anirudha Bhagwat 3 Aug 08, 2021
Code for Multiple Instance Active Learning for Object Detection, CVPR 2021

Language: 简体中文 | English Introduction This is the code for Multiple Instance Active Learning for Object Detection, CVPR 2021. Installation A Linux pla

Tianning Yuan 269 Dec 21, 2022
Genpass - A Passwors Generator App With Python3

Genpass Welcom again into another python3 App this is simply an Passwors Generat

Mal4D 1 Jan 09, 2022
SPTAG: A library for fast approximate nearest neighbor search

SPTAG: A library for fast approximate nearest neighbor search SPTAG SPTAG (Space Partition Tree And Graph) is a library for large scale vector approxi

Microsoft 4.3k Jan 01, 2023
Rotation Robust Descriptors

RoRD Rotation-Robust Descriptors and Orthographic Views for Local Feature Matching Project Page | Paper link Evaluation and Datasets MMA : Training on

Udit Singh Parihar 25 Nov 15, 2022
Generating images from caption and vice versa via CLIP-Guided Generative Latent Space Search

CLIP-GLaSS Repository for the paper Generating images from caption and vice versa via CLIP-Guided Generative Latent Space Search An in-browser demo is

Federico Galatolo 172 Dec 22, 2022
This is my codes that can visualize the psnr image in testing videos.

CVPR2018-Baseline-PSNRplot This is my codes that can visualize the psnr image in testing videos. Future Frame Prediction for Anomaly Detection – A New

Wenhao Yang 12 May 29, 2021
Official source code of paper 'IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo'

IterMVS official source code of paper 'IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo' Introduction IterMVS is a novel lear

Fangjinhua Wang 127 Jan 04, 2023
Forecasting directional movements of stock prices for intraday trading using LSTM and random forest

Forecasting directional movements of stock-prices for intraday trading using LSTM and random-forest https://arxiv.org/abs/2004.10178 Pushpendu Ghosh,

Pushpendu Ghosh 270 Dec 24, 2022
Picasso: A CUDA-based Library for Deep Learning over 3D Meshes

The Picasso Library is intended for complex real-world applications with large-scale surfaces, while it also performs impressively on the small-scale applications over synthetic shape manifolds. We h

97 Dec 01, 2022
A Light in the Dark: Deep Learning Practices for Industrial Computer Vision

A Light in the Dark: Deep Learning Practices for Industrial Computer Vision This is the repository for our Paper/Contribution to the WI2022 in Nürnber

Maximilian Harl 6 Jan 17, 2022
Image reconstruction done with untrained neural networks.

PyTorch Deep Image Prior An implementation of image reconstruction methods from Deep Image Prior (Ulyanov et al., 2017) in PyTorch. The point of the p

Atiyo Ghosh 192 Nov 30, 2022