Code for the paper "A Study of Face Obfuscation in ImageNet"

Overview

A Study of Face Obfuscation in ImageNet

Example images

Code for the paper:

A Study of Face Obfuscation in ImageNet
Kaiyu Yang, Jacqueline Yau, Li Fei-Fei, Jia Deng, and Olga Russakovsky

@article{yang2021imagenetfaces,
 title={A Study of Face Obfuscation in ImageNet},
 author={Yang, Kaiyu and Yau, Jacqueline and Fei-Fei, Li and Deng, Jia and Russakovsky, Olga},
 journal={arXiv preprint arXiv:2103.06191},
 year={2021}
}

Face Annotation

crowdsourcing/ui.html is the UI used for face annotation. It should be used as an HTML template in simple-amt. Please refer to the documentation of simple-amt for detail. The final face annotations are available for download.

Requirements

  1. Download and install Miniconda Python 3 (Anaconda should also work).
  2. Edit imagenet-face-obfuscation.yaml according to your system. For example, remove - cudatoolkit=11.0 if you don't have a GPU. Change the version of cudatoolkit if necessary. You could see the instructions for installing PyTorch for what CUDA version to put in imagenet-face-obfuscation.yaml.
  3. Install Python dependencies using conda: conda env create -f imagenet-face-obfuscation.yaml && conda activate imagenet-face-obfuscation. If you have troubles with the aforementioned two steps, you may manually install the packages in imagenet-face-obfuscation.yaml in whatever way that works for you.

Data

The face-blurred images are avaialble for download on the ImageNet website. They were generated by running python experiments/blurring.py. Please refer to the source file of experiments/blurring.py for details. For original images, please use the official ILSVRC 2012 dataset.

Save the original images to data/train/ and data/val/; save the blurred images to data/train_blurred/ and data/val_blurred/. In each directory, each category should has a subdirectory, and images should be in the subdirectories. For example: data/val_blurred/n02119022/ILSVRC2012_val_00012978.jpg.

Training and Validation

experiments/trainval.py is the script for training and validation. It is based on an example from PyTorch with only minor changes. Most command-line options in the original example still apply. Please refer to the original documentation for details.
For example, to train a ResNet18 on a single GPU.

python experiments/trainval.py -a resnet18 --learning-rate 0.1 --gpu 0

To train a ResNet50 on all GPUs on the current node:

python experiments/trainval.py -a resnet50 --learning-rate 0.1 --dist-url 'tcp://127.0.0.1:6666' --dist-backend 'nccl' --multiprocessing-distributed --world-size 1 --rank 0

We add a few additional command-line options for training/evaluating on face-obfuscated images:

  • --exp-id EXPID: "EXPID" is an arbitrary experiment identifier. Model checkpoints will be saved to EXPID_model_best.pth and EXPID_model_latest.pth. Validation results will be saved to EXPID_val_results.pickle.
  • --blur-train: Use face-blurred images for training.
  • --blur-val: Use face-blurred images for validation.
  • --overlay: Use overlayed images for both training and validation. It cannot co-occur with --blur-train or --blur-val.

For example, to train and evaluate an AlexNet on face-blurred images:

python experiments/trainval.py -a alexnet --learning_rate 0.01 --gpu 0 --blur-train --blur-val --exp-id alexnet_blurred_train_blurred_val

To train a ResNet152 on face-blurred images but evalaute on original images:

python experiments/trainval.py -a resnet152 --learning-rate 0.1 --dist-url 'tcp://127.0.0.1:6667' --dist-backend 'nccl' --multiprocessing-distributed --world-size 1 --rank 0 --blur-train --exp-id hello_my_experiment

Models pretrained on face-blurred images are available for download here.

Our validation results for all models are available here. Before the next step, please download these pickle files to eval_pickles/. You could also run the training script to produce them by yourself.

Analyses

Please first make sure validation pickle files are in eval_pickles/ and face annotations are in data/face_annotations_ILSVRC.json.

Faces in different supercategories

To produce Table 2 in the paper:

python analysis/supercategories.py
Supercategory              #Categories    #Images    With faces (%)
-----------------------  -------------  ---------  ----------------
clothing.n.01                       49      62471          58.9025
wheeled_vehicle.n.01                44      57055          35.2975
musical_instrument.n.01             26      33779          47.6361
bird.n.01                           59      76536           1.68809
insect.n.01                         27      35097           1.80642

Faces in different categories

To produce Figure 2 in the paper:

python analysis/num_images.py

num_images_per_category num_faces_per_image

Overall validation accuracy

To produce Table 3 in the paper:

python analysis/overall_accuracy.py
model               top1 original    top1 blurred       top1 diff  top5 original    top5 blurred       top5 diff
------------------  ---------------  ---------------  -----------  ---------------  ---------------  -----------
alexnet             56.043 +- 0.258  55.834 +- 0.108        0.209  78.835 +- 0.115  78.547 +- 0.071        0.288
squeezenet1_0       55.989 +- 0.179  55.323 +- 0.039        0.666  78.602 +- 0.172  78.061 +- 0.017        0.541
shufflenet_v2_x1_0  64.646 +- 0.178  64.001 +- 0.068        0.645  85.927 +- 0.024  85.458 +- 0.051        0.47
vgg11               68.905 +- 0.039  68.209 +- 0.128        0.695  88.682 +- 0.025  88.283 +- 0.046        0.399
vgg13               69.925 +- 0.058  69.271 +- 0.103        0.653  89.324 +- 0.064  88.928 +- 0.034        0.396
vgg16               71.657 +- 0.061  70.839 +- 0.047        0.818  90.456 +- 0.067  89.897 +- 0.108        0.559
vgg19               72.363 +- 0.023  71.538 +- 0.032        0.826  90.866 +- 0.053  90.289 +- 0.008        0.577
mobilenet_v2        65.378 +- 0.182  64.367 +- 0.203        1.011  86.651 +- 0.059  85.969 +- 0.060        0.682
densenet121         75.036 +- 0.055  74.244 +- 0.064        0.792  92.375 +- 0.031  91.958 +- 0.100        0.417
densenet201         76.984 +- 0.021  76.551 +- 0.044        0.433  93.480 +- 0.034  93.223 +- 0.068        0.257
resnet18            69.767 +- 0.171  69.012 +- 0.174        0.755  89.223 +- 0.024  88.738 +- 0.031        0.485
resnet34            73.083 +- 0.131  72.307 +- 0.351        0.776  91.289 +- 0.008  90.755 +- 0.130        0.534
resnet50            75.461 +- 0.198  75.003 +- 0.074        0.458  92.487 +- 0.015  92.360 +- 0.071        0.127
resnet101           77.254 +- 0.070  76.735 +- 0.092        0.519  93.591 +- 0.085  93.310 +- 0.052        0.281
resnet152           77.853 +- 0.117  77.279 +- 0.091        0.573  93.933 +- 0.038  93.674 +- 0.011        0.26
average             70.023           69.368                 0.655  89.048           88.630                 0.418

To produce Table B in the paper:

python analysis/overall_accuracy_overlay.py
model               top1 original    top1 overlayed      top1 diff  top5 original    top5 overlayed      top5 diff
------------------  ---------------  -----------------  -----------  ---------------  -----------------  -----------
alexnet             56.043 +- 0.258  55.474 +- 0.236          0.569  78.835 +- 0.115  78.172 +- 0.187          0.663
squeezenet1_0       55.989 +- 0.179  55.039 +- 0.221          0.95   78.602 +- 0.172  77.633 +- 0.108          0.969
shufflenet_v2_x1_0  64.646 +- 0.178  63.684 +- 0.033          0.962  85.927 +- 0.024  85.166 +- 0.167          0.761
vgg11               68.905 +- 0.039  67.834 +- 0.157          1.071  88.682 +- 0.025  87.880 +- 0.036          0.802
vgg13               69.925 +- 0.058  68.749 +- 0.015          1.175  89.324 +- 0.064  88.536 +- 0.062          0.788
vgg16               71.657 +- 0.061  70.568 +- 0.100          1.089  90.456 +- 0.067  89.573 +- 0.019          0.883
vgg19               72.363 +- 0.023  71.206 +- 0.152          1.158  90.866 +- 0.053  90.104 +- 0.050          0.762
mobilenet_v2        65.378 +- 0.182  64.335 +- 0.162          1.043  86.651 +- 0.059  85.728 +- 0.066          0.922
densenet121         75.036 +- 0.055  74.062 +- 0.048          0.974  92.375 +- 0.031  91.700 +- 0.025          0.675
densenet201         76.984 +- 0.021  76.056 +- 0.073          0.928  93.480 +- 0.034  92.868 +- 0.064          0.612
resnet18            69.767 +- 0.171  68.938 +- 0.069          0.829  89.223 +- 0.024  88.665 +- 0.110          0.557
resnet34            73.083 +- 0.131  72.369 +- 0.099          0.714  91.289 +- 0.008  90.699 +- 0.020          0.589
resnet50            75.461 +- 0.198  74.916 +- 0.007          0.545  92.487 +- 0.015  92.154 +- 0.027          0.333
resnet101           77.254 +- 0.070  76.677 +- 0.102          0.577  93.591 +- 0.085  93.114 +- 0.077          0.476
resnet152           77.853 +- 0.117  76.978 +- 0.149          0.875  93.933 +- 0.038  93.342 +- 0.246          0.592
average             70.023           69.126                   0.897  89.048           88.356                   0.692

Category-wise accuracies

To produce Table 4 in the paper:

python analysis/categorywise_accuracies.py
Category                 top1 original    top1 blurred       top1 diff  top5 original    top5 blurred       top5 diff  AP original      AP blurred         AP diff
-----------------------  ---------------  ---------------  -----------  ---------------  ---------------  -----------  ---------------  ---------------  ---------
eskimo_dog.n.01          50.800 +- 1.105  37.956 +- 0.412       12.844  95.467 +- 0.377  95.156 +- 0.166        0.311  19.378 +- 0.765  19.908 +- 0.481     -0.529
siberian_husky.n.01      46.267 +- 1.792  63.200 +- 0.762      -16.933  96.978 +- 0.440  97.244 +- 0.251       -0.267  29.198 +- 0.283  29.616 +- 0.485     -0.418
projectile.n.01          35.556 +- 0.880  21.733 +- 0.998       13.822  86.178 +- 0.412  85.467 +- 0.377        0.711  23.098 +- 0.365  22.537 +- 0.510      0.561
missile.n.01             31.556 +- 0.708  45.822 +- 0.817      -14.267  81.511 +- 0.725  81.822 +- 0.382       -0.311  20.404 +- 0.264  21.120 +- 0.633     -0.716
tub.n.02                 35.511 +- 1.462  27.867 +- 0.576        7.644  79.422 +- 0.600  75.644 +- 0.453        3.778  19.853 +- 0.430  18.778 +- 0.231      1.075
bathtub.n.01             35.422 +- 0.988  42.533 +- 0.377       -7.111  78.933 +- 0.327  80.800 +- 1.236       -1.867  27.378 +- 0.757  25.079 +- 0.584      2.299
american_chameleon.n.01  62.978 +- 0.350  54.711 +- 1.214        8.267  96.978 +- 0.491  96.578 +- 0.453        0.4    39.963 +- 0.184  39.292 +- 0.525      0.671
green_lizard.n.01        42.000 +- 0.566  45.556 +- 1.238       -3.556  91.289 +- 0.274  89.689 +- 0.166        1.6    22.615 +- 0.775  22.407 +- 0.095      0.208

Credits

To prepare an image processing model to classify the type of disaster based on the image dataset

Disaster Classificiation using CNNs bunnysaini/Disaster-Classificiation Goal To prepare an image processing model to classify the type of disaster bas

Bunny Saini 1 Jan 24, 2022
Pytorch implementation of "ARM: Any-Time Super-Resolution Method"

ARM-Net Dependencies Python 3.6 Pytorch 1.7 Results Train Data preprocessing cd data_scripts python extract_subimages_test.py python data_augmentation

Bohong Chen 55 Nov 24, 2022
BABEL: Bodies, Action and Behavior with English Labels [CVPR 2021]

BABEL is a large dataset with language labels describing the actions being performed in mocap sequences. BABEL labels about 43 hours of mocap sequences from AMASS [1] with action labels.

113 Dec 28, 2022
Implementation of Vision Transformer, a simple way to achieve SOTA in vision classification with only a single transformer encoder, in Pytorch

Implementation of Vision Transformer, a simple way to achieve SOTA in vision classification with only a single transformer encoder, in Pytorch

Phil Wang 12.6k Jan 09, 2023
A Python package for generating concise, high-quality summaries of a probability distribution

GoodPoints A Python package for generating concise, high-quality summaries of a probability distribution GoodPoints is a collection of tools for compr

Microsoft 28 Oct 10, 2022
Train CPPNs as a Generative Model, using Generative Adversarial Networks and Variational Autoencoder techniques to produce high resolution images.

cppn-gan-vae tensorflow Train Compositional Pattern Producing Network as a Generative Model, using Generative Adversarial Networks and Variational Aut

hardmaru 343 Dec 29, 2022
[ICCV 2021] Code release for "Sub-bit Neural Networks: Learning to Compress and Accelerate Binary Neural Networks"

Sub-bit Neural Networks: Learning to Compress and Accelerate Binary Neural Networks By Yikai Wang, Yi Yang, Fuchun Sun, Anbang Yao. This is the pytorc

Yikai Wang 26 Nov 20, 2022
A collection of semantic image segmentation models implemented in TensorFlow

A collection of semantic image segmentation models implemented in TensorFlow. Contains data-loaders for the generic and medical benchmark datasets.

bobby 16 Dec 06, 2019
Analyzing basic network responses to novel classes

novelty-detection Analyzing how AlexNet responds to novel classes with varying degrees of similarity to pretrained classes from ImageNet. If you find

Noam Eshed 34 Oct 02, 2022
Source code for paper "Deep Diffusion Models for Robust Channel Estimation", TBA.

diffusion-channels Source code for paper "Deep Diffusion Models for Robust Channel Estimation". Generic flow: Use 'matlab/main.mat' to generate traini

The University of Texas Computational Sensing and Imaging Lab 15 Dec 22, 2022
List of content farm sites like g.penzai.com.

内容农场网站清单 Google 中文搜索结果包含了相当一部分的内容农场式条目,比如「小 X 知识网」「小 X 百科网」。此种链接常会 302 重定向其主站,页面内容为自动生成,大量堆叠关键字,揉杂一些爬取到的内容,完全不具可读性和参考价值。 尤为过分的是,该类网站可能有成千上万个分身域名被 Goog

WDMPA 541 Jan 03, 2023
Semantic Segmentation with Pytorch-Lightning

This is a simple demo for performing semantic segmentation on the Kitti dataset using Pytorch-Lightning and optimizing the neural network by monitoring and comparing runs with Weights & Biases.

Boris Dayma 58 Nov 18, 2022
Official Code for VideoLT: Large-scale Long-tailed Video Recognition (ICCV 2021)

Pytorch Code for VideoLT [Website][Paper] Updates [10/29/2021] Features uploaded to Google Drive, for access please send us an e-mail: zhangxing18 at

Skye 26 Sep 18, 2022
A series of Python scripts to access measurements from Fluke 28X meters. Fluke IR Remote Interface required.

Fluke289_data_access A series of Python scripts to access measurements from Fluke 28X meters. Fluke IR Remote Interface required. Created from informa

3 Dec 08, 2022
Binary Stochastic Neurons in PyTorch

Binary Stochastic Neurons in PyTorch http://r2rt.com/binary-stochastic-neurons-in-tensorflow.html https://github.com/pytorch/examples/tree/master/mnis

Onur Kaplan 54 Nov 21, 2022
A Convolutional Transformer for Keyword Spotting

☢️ Audiomer ☢️ Audiomer: A Convolutional Transformer for Keyword Spotting [ arXiv ] [ Previous SOTA ] [ Model Architecture ] Results on SpeechCommands

49 Jan 27, 2022
Monocular Depth Estimation - Weighted-average prediction from multiple pre-trained depth estimation models

merged_depth runs (1) AdaBins, (2) DiverseDepth, (3) MiDaS, (4) SGDepth, and (5) Monodepth2, and calculates a weighted-average per-pixel absolute dept

Pranav 39 Nov 21, 2022
Pytorch implementation of Straight Sampling Network For Point Cloud Learning (ICIP2021).

Pytorch code for SS-Net This is a pytorch implementation of Straight Sampling Network For Point Cloud Learning (ICIP2021). Environment Code is tested

Sun Ran 1 May 18, 2022
Dynamic Divide-and-Conquer Adversarial Training for Robust Semantic Segmentation (ICCV2021)

Dynamic Divide-and-Conquer Adversarial Training for Robust Semantic Segmentation This is a pytorch project for the paper Dynamic Divide-and-Conquer Ad

DV Lab 29 Nov 21, 2022
Lighthouse: Predicting Lighting Volumes for Spatially-Coherent Illumination

Lighthouse: Predicting Lighting Volumes for Spatially-Coherent Illumination Pratul P. Srinivasan, Ben Mildenhall, Matthew Tancik, Jonathan T. Barron,

Pratul Srinivasan 65 Dec 14, 2022