G-NIA model from "Single Node Injection Attack against Graph Neural Networks" (CIKM 2021)

Overview

Single Node Injection Attack against Graph Neural Networks

This repository is our Pytorch implementation of our paper:

Single Node Injection Attack against Graph Neural Networks

By Shuchang Tao, Qi Cao, Huawei Shen, Junjie Huang, Yunfan Wu and Xueqi Cheng

Published at CIKM 2021

Introduction

In this paper, we focus on an extremely limited scenario of single node injection evasion attack, i.e., the attacker is only allowed to inject one single node during the test phase to hurt GNNโ€™s performance. Single node injection evasion attack has the advantages of being difficult to detect and low in cost. Taking social networks as an example, it is very difficult for both the detection system and the user to detect the addition of one single malicious follower, especially compared with existing node injection methods which lead to a sudden emergence of multiple followers.

G-NIA

We propose a Generalizable Node Injection Attack model, namely G-NIA, to improve the attack efficiency while ensuring the attack performance. G-NIA generates the discrete edges by Gumbel-Top-๐‘˜ and captures the coupling effect between network structure and node features by a sophisticated designed model.

Further details can be found in our paper.

Results

Our proposed model G-NIA outperforms all the baselines (or performs the same as the state-of-the-art baseline) on all datasets attacking all the three GNNs.

Requirements

  • python>=3.6

  • pytorch>=1.5.0

  • scipy

  • numpy

Datasets

Download Citeseer, Reddit (the subgraph in our paper), ogbproducts (the subgraph in our paper) from Here.

Put datasets.zip in this directory and unzip it.

The train/val/test split mentioned in our paper is also included in the above datasets.zip.

Usage

Example Usage

python -u run_gnia.py --suffix single_gcn --nepochs 10000 --lr 1e-5 --connect True --epsst 50 --epsdec 1 --patience 500 --dataset 12k_reddit --edgetau 0.01 --surro_type gcn --victim_type gcn --batchsize 32

For detailed description of all parameters, you can run

python -u run_gnia.py --help

Cite

If you would like to use our code, please cite:

@inproceedings{tao2021gnia,
  title={Single Node Injection Attack against Graph Neural Networks},
  author={Shuchang Tao and Qi Cao and Huawei Shen and Junjie Huang and Yunfan Wu and Xueqi Cheng.},
  booktitle={Proceedings of the 30th ACM International Conference on Information and Knowledge Management},
  series={CIKM'21},
  year={2021}
}
Owner
Shuchang Tao
Ph.D. @ICT. Adversarial Attack; Graph Neural Network; Robustness
Shuchang Tao
DIR-GNN - Discovering Invariant Rationales for Graph Neural Networks

DIR-GNN "Discovering Invariant Rationales for Graph Neural Networks" (ICLR 2022)

Ying-Xin (Shirley) Wu 70 Nov 13, 2022
Code for the paper SphereRPN: Learning Spheres for High-Quality Region Proposals on 3D Point Clouds Object Detection, ICIP 2021.

SphereRPN Code for the paper SphereRPN: Learning Spheres for High-Quality Region Proposals on 3D Point Clouds Object Detection, ICIP 2021. Authors: Th

Thang Vu 15 Dec 02, 2022
Bringing sanity to world of messed-up data

Sanitize sanitize is a Python module for making sure various things (e.g. HTML) are safe to use. It was originally written by Mark Pilgrim and is dist

Alireza Savand 63 Oct 26, 2021
2021 Artificial Intelligence Diabetes Datathon

A.I.D.D. 2021 2021 Artificial Intelligence Diabetes Datathon A.I.D.D. 2021์€ โ€˜2021 ์ธ๊ณต์ง€๋Šฅ ํ•™์Šต์šฉ ๋ฐ์ดํ„ฐ ๊ตฌ์ถ•์‚ฌ์—…โ€™์„ ํ†ตํ•ด ๋งŒ๋“ค์–ด์ง„ ํ•™์Šต์šฉ ๋ฐ์ดํ„ฐ๋ฅผ ํ™œ์šฉํ•˜์—ฌ ๋‹น๋‡จ๋ณ‘์„ ํšจ๊ณผ์ ์œผ๋กœ ์˜ˆ์ธกํ•  ์ˆ˜ ์žˆ๋Š”๊ฐ€์— ๋Œ€ํ•œ A

2 Dec 27, 2021
The Empirical Investigation of Representation Learning for Imitation (EIRLI)

The Empirical Investigation of Representation Learning for Imitation (EIRLI)

Center for Human-Compatible AI 31 Nov 06, 2022
Vehicle Detection Using Deep Learning and YOLO Algorithm

VehicleDetection Vehicle Detection Using Deep Learning and YOLO Algorithm Dataset take or find vehicle images for create a special dataset for fine-tu

Maryam Boneh 96 Jan 05, 2023
This is an open solution to the Home Credit Default Risk challenge ๐Ÿก

Home Credit Default Risk: Open Solution This is an open solution to the Home Credit Default Risk challenge ๐Ÿก . More competitions ๐ŸŽ‡ Check collection

minerva.ml 427 Dec 27, 2022
Speech Recognition is an important feature in several applications used such as home automation, artificial intelligence

Speech Recognition is an important feature in several applications used such as home automation, artificial intelligence, etc. This article aims to provide an introduction on how to make use of the S

RISHABH MISHRA 1 Feb 13, 2022
Cold Brew: Distilling Graph Node Representations with Incomplete or Missing Neighborhoods

Cold Brew: Distilling Graph Node Representations with Incomplete or Missing Neighborhoods Introduction Graph Neural Networks (GNNs) have demonstrated

37 Dec 15, 2022
gitใ€ŠBeta R-CNN: Looking into Pedestrian Detection from Another Perspectiveใ€‹(NeurIPS 2020) GitHub:[fig3]

Beta R-CNN: Looking into Pedestrian Detection from Another Perspective This is the pytorch implementation of our paper "[Beta R-CNN: Looking into Pede

35 Sep 08, 2021
(JMLR' 19) A Python Toolbox for Scalable Outlier Detection (Anomaly Detection)

Python Outlier Detection (PyOD) Deployment & Documentation & Stats & License PyOD is a comprehensive and scalable Python toolkit for detecting outlyin

Yue Zhao 6.6k Jan 05, 2023
Geometric Deep Learning Extension Library for PyTorch

Documentation | Paper | Colab Notebooks | External Resources | OGB Examples PyTorch Geometric (PyG) is a geometric deep learning extension library for

Matthias Fey 16.5k Jan 08, 2023
Code for the paper "Controllable Video Captioning with an Exemplar Sentence"

SMCG Code for the paper "Controllable Video Captioning with an Exemplar Sentence" Introduction We investigate a novel and challenging task, namely con

10 Dec 04, 2022
A simple approach to emable dense segmentation with ViT.

Vision Transformer Segmentation Network This implementation of ViT in pytorch uses a super simple and straight-forward way of generating an output of

HReynaud 5 Jan 03, 2023
PyTorch implementation of "Supervised Contrastive Learning" (and SimCLR incidentally)

PyTorch implementation of "Supervised Contrastive Learning" (and SimCLR incidentally)

Yonglong Tian 2.2k Jan 08, 2023
Episodic-memory - Ego4D Episodic Memory Benchmark

Ego4D Episodic Memory Benchmark EGO4D is the world's largest egocentric (first p

3 Feb 18, 2022
PyTorch implementation of GLOM

GLOM PyTorch implementation of GLOM, Geoffrey Hinton's new idea that integrates concepts from neural fields, top-down-bottom-up processing, and attent

Yeonwoo Sung 20 Aug 17, 2022
Label-Free Model Evaluation with Semi-Structured Dataset Representations

Label-Free Model Evaluation with Semi-Structured Dataset Representations Prerequisites This code uses the following libraries Python 3.7 NumPy PyTorch

8 Oct 06, 2022
A simple implementation of Kalman filter in Multi Object Tracking

kalman Filter in Multi-object Tracking A simple implementation of Kalman filter in Multi Object Tracking ๆœฌๅฎž็Žฐๆ˜ฏๅœจhttps://github.com/liuchangji/kalman-fil

124 Dec 29, 2022