It is a simple library to speed up CLIP inference up to 3x (K80 GPU)

Overview

CLIP-ONNX

It is a simple library to speed up CLIP inference up to 3x (K80 GPU)

Usage

Install clip-onnx module and requirements first. Use this trick

!pip install git+https://github.com/Lednik7/CLIP-ONNX.git

Example in 3 steps

  1. Download CLIP image from repo
!wget -c -O CLIP.png https://github.com/openai/CLIP/blob/main/CLIP.png?raw=true
  1. Load standard CLIP model, image, text on cpu
import clip
from PIL import Image

# onnx cannot work with cuda
model, preprocess = clip.load("ViT-B/32", device="cpu", jit=False)
# batch first
image = preprocess(Image.open("CLIP.png")).unsqueeze(0) # [1, 3, 224, 224]
text = clip.tokenize(["a diagram", "a dog", "a cat"]) # [3, 77]
  1. Create CLIP-ONNX object to convert model to onnx
from clip_onnx import clip_onnx, attention
clip.model.ResidualAttentionBlock.attention = attention

visual_path = "clip_visual.onnx"
textual_path = "clip_textual.onnx"

# ['TensorrtExecutionProvider', 'CUDAExecutionProvider', 'CPUExecutionProvider']
onnx_model = clip_onnx(model, providers=["CPUExecutionProvider"], # cpu mode
                       visual_path=visual_path, textual_path=textual_path)
onnx_model.convert2onnx(image, text, verbose=True)
onnx_model.start_sessions()
  1. Use for standard CLIP API. Batch inference
image_features = onnx_model.encode_image(image)
text_features = onnx_model.encode_text(text)

logits_per_image, logits_per_text = onnx_model(image, text)
probs = logits_per_image.softmax(dim=-1).cpu().numpy()

print("Label probs:", probs)  # prints: [[0.41456965 0.29270944 0.29272085]]

Enjoy the speed

Examples

See examples folder for more details
Some parts of the code were taken from the post. Thank you neverix for this notebook.

Comments
  • Can't use CUDAExecutionProvider

    Can't use CUDAExecutionProvider

    Hey, I'm trying to use the code on GPU and I encountered 2 problems:

    1. when running pip install git+https://github.com/Lednik7/CLIP-ONNX.git I got the following error (tried on multiple machines): ERROR: Could not find a version that satisfies the requirement torch==1.10.0+cu111 (from clip-onnx)

    I fixed it by installing that version of torch by myself. with pip install torch==1.10.0+cu111 torchvision==0.11.0+cu111 -f https://download.pytorch.org/whl/torch_stable.html, and then running the rest of the installation.

    1. After I installed the package, I tried to run the example in the readme with CPUExecutionProvider and it worked fine, but when I'm trying to run it on GPU with CUDAExecutionProvider I get the following error message (again on different machines):

    2022-01-31 20:57:03.234399301 [W:onnxruntime:Default, onnxruntime_pybind_state.cc:535 CreateExecutionProviderInstance] Failed to create CUDAExecutionProvider. Please reference https://onnxruntime.ai/docs/reference/execution-providers/CUDA-ExecutionProvider.html#requirements to ensure all dependencies are met. 2022-01-31 20:57:03.872349008 [W:onnxruntime:Default, onnxruntime_pybind_state.cc:535 CreateExecutionProviderInstance] Failed to create CUDAExecutionProvider. Please reference https://onnxruntime.ai/docs/reference/execution-providers/CUDA-ExecutionProvider.html#requirements to ensure all dependencies are met.

    I can't figure out what is the problem. Any help?

    opened by YoadTew 13
  • Performance is inconsistent with the original model

    Performance is inconsistent with the original model

    Hi, thanks for providing this useful tool! However, I found that the result produced by the generated ONNX model is inconsistent with the original CLIP model. Here is the code I used to test the original model:

    model, preprocess = clip.load("ViT-B/32", device="cpu", jit=False)
    
    image = preprocess(Image.open("CLIP.png")).unsqueeze(0).cpu() # [1, 3, 224, 224]
    text = clip.tokenize(["a diagram", "a dog", "a cat"]).cpu() # [3, 77]
    
    image_features = model.encode_image(image)
    text_features = model.encode_text(text)
    
    logits_per_image, logits_per_text = model(image, text)
    probs = logits_per_image.softmax(dim=-1).detach().cpu().numpy()
    
    print("Label probs:", probs) 
    

    The result is: Label probs: [[0.9927937 0.00421069 0.00299573]]

    However, when using the onnx model, the result is: Label probs: [[0.41456965 0.29270944 0.29272085]].

    Could you help me with this? Thanks!

    opened by Cestlaviez 5
  • Error on installing the torch version in requirements.txt

    Error on installing the torch version in requirements.txt

    pip install git+https://github.com/Lednik7/CLIP-ONNX.git

    ERROR: Could not find a version that satisfies the requirement torch==1.11.0+cu113 (from versions: 1.0.0, 1.0.1, 1.0.1.post2, 1.1.0, 1.2.0, 1.3.0, 1.3.1, 1.4.0, 1.5.0, 1.5.1, 1.6.0, 1.7.0, 1.7.1, 1.8.0, 1.8.1, 1.9.0, 1.9.1, 1.10.0, 1.10.1, 1.10.2, 1.11.0)
    ERROR: No matching distribution found for torch==1.11.0+cu113
    

    python version is 3.7.13

    opened by dingusagar 2
  • ERROR: No matching distribution found for onnxruntime==1.11

    ERROR: No matching distribution found for onnxruntime==1.11

    Hi, Thanks for the great work!

    I am having this error when I try to install the package.

    ERROR: No matching distribution found for onnxruntime==1.11

    Maybe we can update the requirements.txt?

    opened by wanliAlex 1
  • Replace the operator of

    Replace the operator of "torch.einsum"

    q, k, v = (torch.einsum("tbh, oh -> tbo", x, self.attn.in_proj_weight) + self.attn.in_proj_bias).contiguous().chunk( 3, dim=-1)

    @Lednik7 Thanks for your great work on Clip-ONNX. for the pytorch operator of "torch.einsum" , if we don't want to use this operator , do you have other codes to replace this operator? this operator is not friendly to some Inference engine, like NV TensorRT, so if you have other codes to replace einsum, that will be better

    opened by zhangnju 2
Owner
Gerasimov Maxim
16 y.o. Data Scientist. Graduated by Yandex Lyceum and Tinkoff Education
Gerasimov Maxim
BEAMetrics: Benchmark to Evaluate Automatic Metrics in Natural Language Generation

BEAMetrics: Benchmark to Evaluate Automatic Metrics in Natural Language Generation Installing The Dependencies $ conda create --name beametrics python

7 Jul 04, 2022
Employee-Managment - Company employee registration software in the face recognition system

Employee-Managment Company employee registration software in the face recognitio

Alireza Kiaeipour 7 Jul 10, 2022
Code release for SLIP Self-supervision meets Language-Image Pre-training

SLIP: Self-supervision meets Language-Image Pre-training What you can find in this repo: Pre-trained models (with ViT-Small, Base, Large) and code to

Meta Research 621 Dec 31, 2022
๐Ÿ– Keras Implementation of Painting outside the box

Keras implementation of Image OutPainting This is an implementation of Painting Outside the Box: Image Outpainting paper from Standford University. So

Bendang 1.1k Dec 10, 2022
Segcache: a memory-efficient and scalable in-memory key-value cache for small objects

Segcache: a memory-efficient and scalable in-memory key-value cache for small objects This repo contains the code of Segcache described in the followi

TheSys Group @ CMU CS 78 Jan 07, 2023
Bayesian optimisation library developped by Huawei Noah's Ark Library

Bayesian Optimisation Research This directory contains official implementations for Bayesian optimisation works developped by Huawei R&D, Noah's Ark L

HUAWEI Noah's Ark Lab 395 Dec 30, 2022
KAPAO is an efficient multi-person human pose estimation model that detects keypoints and poses as objects and fuses the detections to predict human poses.

KAPAO (Keypoints and Poses as Objects) KAPAO is an efficient single-stage multi-person human pose estimation model that models keypoints and poses as

Will McNally 664 Dec 30, 2022
Train SN-GAN with AdaBelief

SNGAN-AdaBelief Train a state-of-the-art spectral normalization GAN with AdaBelief https://github.com/juntang-zhuang/Adabelief-Optimizer Acknowledgeme

Juntang Zhuang 10 Jun 11, 2022
Sound Event Detection with FilterAugment

Sound Event Detection with FilterAugment Official implementation of Heavily Augmented Sound Event Detection utilizing Weak Predictions (DCASE2021 Chal

43 Aug 28, 2022
Public repo for the ICCV2021-CVAMD paper "Is it Time to Replace CNNs with Transformers for Medical Images?"

Is it Time to Replace CNNs with Transformers for Medical Images? Accepted at ICCV-2021: Workshop on Computer Vision for Automated Medical Diagnosis (C

Christos Matsoukas 80 Dec 27, 2022
Official pytorch implementation of Rainbow Memory (CVPR 2021)

Rainbow Memory: Continual Learning with a Memory of Diverse Samples

Clova AI Research 91 Dec 17, 2022
MLOps will help you to understand how to build a Continuous Integration and Continuous Delivery pipeline for an ML/AI project.

page_type languages products description sample python azure azure-machine-learning-service azure-devops Code which demonstrates how to set up and ope

1 Nov 01, 2021
A data annotation pipeline to generate high-quality, large-scale speech datasets with machine pre-labeling and fully manual auditing.

About This repository provides data and code for the paper: Scalable Data Annotation Pipeline for High-Quality Large Speech Datasets Development (subm

Appen Repos 86 Dec 07, 2022
A scikit-learn-compatible module for estimating prediction intervals.

|Anaconda|_ MAPIE - Model Agnostic Prediction Interval Estimator MAPIE allows you to easily estimate prediction intervals using your favourite sklearn

SimAI 584 Dec 27, 2022
RM Operation can equivalently convert ResNet to VGG, which is better for pruning; and can help RepVGG perform better when the depth is large.

RM Operation can equivalently convert ResNet to VGG, which is better for pruning; and can help RepVGG perform better when the depth is large.

184 Jan 04, 2023
The implementation of the CVPR2021 paper "Structure-Aware Face Clustering on a Large-Scale Graph with 10^7 Nodes"

STAR-FC This code is the implementation for the CVPR 2021 paper "Structure-Aware Face Clustering on a Large-Scale Graph with 10^7 Nodes" ๐ŸŒŸ ๐ŸŒŸ . ๐ŸŽ“ Re

Shuai Shen 87 Dec 28, 2022
TorchIO is a Medical image preprocessing and augmentation toolkit for deep learning. Part of the PyTorch Ecosystem.

Medical image preprocessing and augmentation toolkit for deep learning. Part of the PyTorch Ecosystem.

Fernando Pรฉrez-Garcรญa 1.6k Jan 06, 2023
Usable Implementation of "Bootstrap Your Own Latent" self-supervised learning, from Deepmind, in Pytorch

Bootstrap Your Own Latent (BYOL), in Pytorch Practical implementation of an astoundingly simple method for self-supervised learning that achieves a ne

Phil Wang 1.4k Dec 29, 2022
Retina blood vessel segmentation with a convolutional neural network

Retina blood vessel segmentation with a convolution neural network (U-net) This repository contains the implementation of a convolutional neural netwo

Orobix 1.2k Jan 06, 2023
๐Ÿ˜‡A pyTorch implementation of the DeepMoji model: state-of-the-art deep learning model for analyzing sentiment, emotion, sarcasm etc

------ Update September 2018 ------ It's been a year since TorchMoji and DeepMoji were released. We're trying to understand how it's being used such t

Hugging Face 865 Dec 24, 2022