The repo for the paper "I3CL: Intra- and Inter-Instance Collaborative Learning for Arbitrary-shaped Scene Text Detection".

Overview

I3CL: Intra- and Inter-Instance Collaborative Learning for Arbitrary-shaped Scene Text Detection

Updates | Introduction | Results | Usage | Citation | Acknowledgment

This is the repo for the paper "I3CL: Intra- and Inter-Instance Collaborative Learning for Arbitrary-shaped Scene Text Detection". I3CL with ViTAEv2, ResNet50 and ResNet50 w/ RegionCL backbone are included.


Updates

[2022/04/13] Publish links of training datasets.

[2022/04/11] Add SSL training code for this implementation.

[2022/04/09] The training code for ICDAR2019 ArT dataset is uploaded. Private github repo temporarily.

Other applications of ViTAE Transformer: Image Classification | Object Detection | Sementic Segmentation | Animal Pose Estimation | Matting | Remote Sensing

Introduction

Existing methods for arbitrary-shaped text detection in natural scenes face two critical issues, i.e., 1) fracture detections at the gaps in a text instance; and 2) inaccurate detections of arbitrary-shaped text instances with diverse background context. To address these issues, we propose a novel method named Intra- and Inter-Instance Collaborative Learning (I3CL). Specifically, to address the first issue, we design an effective convolutional module with multiple receptive fields, which is able to collaboratively learn better character and gap feature representations at local and long ranges inside a text instance. To address the second issue, we devise an instance-based transformer module to exploit the dependencies between different text instances and a global context module to exploit the semantic context from the shared background, which are able to collaboratively learn more discriminative text feature representation. In this way, I3CL can effectively exploit the intra- and inter-instance dependencies together in a unified end-to-end trainable framework. Besides, to make full use of the unlabeled data, we design an effective semi-supervised learning method to leverage the pseudo labels via an ensemble strategy. Without bells and whistles, experimental results show that the proposed I3CL sets new state-of-the-art results on three challenging public benchmarks, i.e., an F-measure of 77.5% on ArT, 86.9% on Total-Text, and 86.4% on CTW-1500. Notably, our I3CL with the ResNeSt-101 backbone ranked the 1st place on the ArT leaderboard.

image

Results

Example results from paper.

image

Evaluation results of I3CL with different backbones on ArT. Note that: (1) I3CL with ViTAE only adopts one training stage with LSVT+MLT19+ArT training datasets in this repo. ResNet series adopt three training stages, i.e, pre-train on SynthText, mix-train on ReCTS+RCTW+LSVT+MLT19+ArT and lastly finetune on LSVT+MLT19+ArT. (2) Origin implementation of ResNet series is based on Detectron2. The results and model links of ResNet-50 will be updated soon in this implementation.

Backbone Model Link Training Data Recall Precision F-measure

ViTAEv2-S
[this repo]

OneDrive/
百度网盘 (pw:w754)

LSVT,MLT19,ArT 75.4 82.8 78.9

ResNet-50
[paper]

- SynthText,ReCTS,RCTW,LSVT,MLT19,ArT 71.3 82.7 76.6

ResNet-50 w/ RegionCL(finetuning)
[paper]

- SynthText,ReCTS,RCTW,LSVT,MLT19,ArT 72.6 81.9 77.0

ResNet-50 w/ RegionCL(w/o finetuning)
[paper]

- SynthText,ReCTS,RCTW,LSVT,MLT19,ArT 73.5 81.6 77.3

ResNeXt-101
[paper]

- SynthText,ReCTS,RCTW,LSVT,MLT19,ArT 74.1 85.5 79.4

ResNeSt-101
[paper]

- SynthText,ReCTS,RCTW,LSVT,MLT19,ArT 75.1 86.3 80.3

ResNeXt-151
[paper]

- SynthText,ReCTS,RCTW,LSVT,MLT19,ArT 74.9 86.0 80.1

Usage

Install

Prerequisites:

  • Linux (macOS and Windows are not tested)
  • Python >= 3.6
  • Pytorch >= 1.8.1 (For ViTAE implementation). Please make sure your compilation CUDA version and runtime CUDA version match.
  • GCC >= 5
  • MMCV (We use mmcv-full==1.4.3)
  1. Create a conda virtual environment and activate it. Note that this implementation is based on mmdetection 2.20.0 version.

  2. Install Pytorch and torchvision following official instructions.

  3. Install mmcv-full and timm. Please refer to mmcv to install the proper version. For example:

    pip install mmcv-full==1.4.3 -f https://download.openmmlab.com/mmcv/dist/cu111/torch1.9.0/index.html
    pip install timm
    
  4. Clone this repository and then install it:

    git clone https://github.com/ViTAE-Transformer/ViTAE-Transformer-Scene-Text-Detection.git
    cd ViTAE-Transformer-Scene-Text-Detection
    pip install -r requirements/build.txt
    pip install -r requirements/runtime.txt
    pip install -v -e .
    

Preparation

Model:

Data

  • Coco format training datasets are utilized. Some offline augmented ArT training datasets are used. lsvt-test is only used to train SSL(Semi-Supervised Learning) model in paper. Files named train_lossweight.json are the provided pseudo-label for SSL training. You can download correspoding datasets in config file from here and put them in data/:

    Dataset

    Link
    (OneDrive)

    Link
    (Baidu Wangpan百度网盘)

    art Link Link (pw:etif)
    art_light Link Link (pw:mzrk)
    art_noise Link Link (pw:scxi)
    art_sig Link Link (pw:cdk8)
    lsvt Link Link (pw:wly0)
    lsvt_test Link Link (pw:8ha3)
    icdar2019_mlt Link Link (pw:hmnj)
    rctw Link Link (pw:ngge)
    rects Link Link (pw:y00o)

    The file structure should look like:

    |- data
        |- art
        |   |- train_images
        |   |    |- *.jpg
        |   |- test_images
        |   |    |- *.jpg
        |   |- train.json
        |   |- train_lossweight.json
        |- art_light
        |   |- train_images
        |   |    |- *.jpg
        |   |- train.json
        |   |- train_lossweight.json
        ......
        |- lsvt
        |   |- train_images1
        |   |    |- *.jpg
        |   |- train_images2
        |   |    |- *.jpg
        |   |- train1.json
        |   |- train1_lossweight.json
        |   |- train2.json
        |   |- train2_lossweight.json
        |- lsvt_test
        |   |- train_images
        |   |    |- *.jpg
        |   |- train_lossweight.json
        ......
    
    

Training

  • Distributed training with 4GPUs for ViTAE backbone:
python -m torch.distributed.launch --nproc_per_node=4 --master_port=29500 tools/train.py \
configs/i3cl_vitae_fpn/i3cl_vitae_fpn_ms_train.py --launcher pytorch --work-dir ./out_dir/${your_dir}
  • Distributed training with 4GPUs for ResNet50 backbone:

stage1:

python -m torch.distributed.launch --nproc_per_node=4 --master_port=29500 tools/train.py \
configs/i3cl_r50_fpn/i3cl_r50_fpn_ms_pretrain.py --launcher pytorch --work-dir ./out_dir/art_r50_pretrain/

stage2:

python -m torch.distributed.launch --nproc_per_node=4 --master_port=29500 tools/train.py \
configs/i3cl_r50_fpn/i3cl_r50_fpn_ms_mixtrain.py --launcher pytorch --work-dir ./out_dir/art_r50_mixtrain/

stage3:

python -m torch.distributed.launch --nproc_per_node=4 --master_port=29500 tools/train.py \
configs/i3cl_r50_fpn/i3cl_r50_fpn_ms_finetune.py --launcher pytorch --work-dir ./out_dir/art_r50_finetune/
  • Distributed training with 4GPUs for ResNet50 w/ RegionCL backbone:

stage1:

python -m torch.distributed.launch --nproc_per_node=4 --master_port=29500 tools/train.py \
configs/i3cl_r50_regioncl_fpn/i3cl_r50_fpn_ms_pretrain.py --launcher pytorch --work-dir ./out_dir/art_r50_regioncl_pretrain/

stage2:

python -m torch.distributed.launch --nproc_per_node=4 --master_port=29500 tools/train.py \
configs/i3cl_r50_regioncl_fpn/i3cl_r50_fpn_ms_mixtrain.py --launcher pytorch --work-dir ./out_dir/art_r50_regioncl_mixtrain/

stage3:

python -m torch.distributed.launch --nproc_per_node=4 --master_port=29500 tools/train.py \
configs/i3cl_r50_regioncl_fpn/i3cl_r50_fpn_ms_finetune.py --launcher pytorch --work-dir ./out_dir/art_r50_regioncl_finetune/

Note:

  • If the GPU memory is limited during training I3CL ViTAE backbone, please adjust img_scale in configuration file. The maximum scale set to (800, 1333) is proper for V100(16G) while there is little effect on the performance actually. Please change the training scale according to your condition.

Inference

For example, use our trained I3CL model to get inference results on ICDAR2019 ArT test set with visualization images, txt format records and the json file for testing submission, please run:

python demo/art_demo.py --checkpoint pretrained_model/I3CL/vitae_epoch_12.pth --score-thr 0.45 --json_file art_submission.json

Note:

  • Upload the saved json file to ICDAR2019-ArT evaluation website for Recall, Precision and F1 evaluation results. Change the path for saving visualizations and txt files if needed.

Citation

This project is for research purpose only.

If you are interested in our work, please consider citing our work. Arxiv

Please post issues to let us know if you encounter any problems.

Acknowledgement

Thanks for mmdetection.

Semantic Bottleneck Scene Generation

SB-GAN Semantic Bottleneck Scene Generation Coupling the high-fidelity generation capabilities of label-conditional image synthesis methods with the f

Samaneh Azadi 41 Nov 28, 2022
基于Pytorch实现优秀的自然图像分割框架!(包括FCN、U-Net和Deeplab)

语义分割学习实验-基于VOC数据集 usage: 下载VOC数据集,将JPEGImages SegmentationClass两个文件夹放入到data文件夹下。 终端切换到目标目录,运行python train.py -h查看训练 (torch) Li Xiang 28 Dec 21, 2022

DAFNe: A One-Stage Anchor-Free Deep Model for Oriented Object Detection

DAFNe: A One-Stage Anchor-Free Deep Model for Oriented Object Detection Code for our Paper DAFNe: A One-Stage Anchor-Free Deep Model for Oriented Obje

Steven Lang 58 Dec 19, 2022
This repository contains code accompanying the paper "An End-to-End Chinese Text Normalization Model based on Rule-Guided Flat-Lattice Transformer"

FlatTN This repository contains code accompanying the paper "An End-to-End Chinese Text Normalization Model based on Rule-Guided Flat-Lattice Transfor

THUHCSI 74 Nov 28, 2022
Python scripts for performing object detection with the 1000 labels of the ImageNet dataset in ONNX.

Python scripts for performing object detection with the 1000 labels of the ImageNet dataset in ONNX. The repository combines a class agnostic object localizer to first detect the objects in the image

Ibai Gorordo 24 Nov 14, 2022
A object detecting neural network powered by the yolo architecture and leveraging the PyTorch framework and associated libraries.

Yolo-Powered-Detector A object detecting neural network powered by the yolo architecture and leveraging the PyTorch framework and associated libraries

Luke Wilson 1 Dec 03, 2021
NDE: Climate Modeling with Neural Diffusion Equation, ICDM'21

Climate Modeling with Neural Diffusion Equation Introduction This is the repository of our accepted ICDM 2021 paper "Climate Modeling with Neural Diff

Jeehyun Hwang 5 Dec 18, 2022
Deep Learning (with PyTorch)

Deep Learning (with PyTorch) This notebook repository now has a companion website, where all the course material can be found in video and textual for

Alfredo Canziani 6.2k Jan 07, 2023
Gesture recognition on Event Data

Event based Gesture Recognition Gesture recognition on Event Data usually involv

2 Feb 14, 2022
Automatic voice-synthetised summaries of latest research papers on arXiv

PaperWhisperer PaperWhisperer is a Python application that keeps you up-to-date with research papers. How? It retrieves the latest articles from arXiv

Valerio Velardo 124 Dec 20, 2022
AIR^2 for Interaction Prediction

This is the repository for AIR^2 for Interaction Prediction. Explanation of the solution: Video: link License AIR is released under the Apache 2.0 lic

21 Sep 27, 2022
Implementation of a protein autoregressive language model, but with autoregressive infilling objective (editing subsequences capability)

Protein GLM (wip) Implementation of a protein autoregressive language model, but with autoregressive infilling objective (editing subsequences capabil

Phil Wang 17 May 06, 2022
Code of the paper "Shaping Visual Representations with Attributes for Few-Shot Learning (ASL)".

Shaping Visual Representations with Attributes for Few-Shot Learning This code implements the Shaping Visual Representations with Attributes for Few-S

chx_nju 9 Sep 01, 2022
Image super-resolution (SR) is a fast-moving field with novel architectures attracting the spotlight

Revisiting RCAN: Improved Training for Image Super-Resolution Introduction Image super-resolution (SR) is a fast-moving field with novel architectures

Zudi Lin 76 Dec 01, 2022
Yolov5 + Deep Sort with PyTorch

딥소트 수정중 Yolov5 + Deep Sort with PyTorch Introduction This repository contains a two-stage-tracker. The detections generated by YOLOv5, a family of obj

1 Nov 26, 2021
[CVPR'21] DeepSurfels: Learning Online Appearance Fusion

DeepSurfels: Learning Online Appearance Fusion Paper | Video | Project Page This is the official implementation of the CVPR 2021 submission DeepSurfel

Online Reconstruction 52 Nov 14, 2022
A graph neural network (GNN) model to predict protein-protein interactions (PPI) with no sample features

A graph neural network (GNN) model to predict protein-protein interactions (PPI) with no sample features

2 Jul 25, 2022
A Deep learning based streamlit web app which can tell with which bollywood celebrity your face resembles.

Project Name: Which Bollywood Celebrity You look like A Deep learning based streamlit web app which can tell with which bollywood celebrity your face

BAPPY AHMED 20 Dec 28, 2021
Official implementation of Deep Convolutional Dictionary Learning for Image Denoising.

DCDicL for Image Denoising Hongyi Zheng*, Hongwei Yong*, Lei Zhang, "Deep Convolutional Dictionary Learning for Image Denoising," in CVPR 2021. (* Equ

Z80 91 Dec 21, 2022
Employee-Managment - Company employee registration software in the face recognition system

Employee-Managment Company employee registration software in the face recognitio

Alireza Kiaeipour 7 Jul 10, 2022