YOLOX_AUDIO is an audio event detection model based on YOLOX

Overview

Introduction

YOLOX_AUDIO is an audio event detection model based on YOLOX, an anchor-free version of YOLO. This repo is an implementated by PyTorch. Main goal of YOLOX_AUDIO is to detect and classify pre-defined audio events in multi-spectrogram domain using image object detection frameworks.

Updates!!

  • 【2021/11/15】 We released YOLOX_AUDIO to public

Quick Start

Installation

Step1. Install YOLOX_AUDIO.

git clone https://github.com/intflow/YOLOX_AUDIO.git
cd YOLOX_AUDIO
pip3 install -U pip && pip3 install -r requirements.txt
pip3 install -v -e .  # or  python3 setup.py develop

Step2. Install pycocotools.

pip3 install cython; pip3 install 'git+https://github.com/cocodataset/cocoapi.git#subdirectory=PythonAPI'
Data Preparation

Step1. Prepare audio wavform files for training. AUDIO_DATAPATH/wav

Step2. Write audio annotation files for training. AUDIO_DATAPATH/label.json

{
    "00000.wav": {
        "speaker": [
            "W",
            "M",
            "C",
            "W"
        ],
        "on_offset": [
            [
                1.34425,
                2.4083125
            ],
            [
                4.0082708333333334,
                4.5560625
            ],
            [
                6.2560416666666665,
                7.956104166666666
            ],
            [
                9.756083333333333,
                10.876624999999999
            ]
        ]
    },
    "00001.wav": {
        "speaker": [
            "W",
            "M",
            "C",
            "M",
            "W",
            "C"
        ],
        "on_offset": [
            [
                1.4325416666666666,
                2.7918958333333332
            ],
            [
                2.1762916666666667,
                4.109729166666667
            ],
            [
                7.109708333333334,
                8.530916666666666
            ],
            [
                8.514125,
                9.306104166666668
            ],
            [
                12.606083333333334,
                14.3345625
            ],
            [
                14.148958333333333,
                15.362958333333333
            ]
        ]
    },
    ...
}

Step3. Convert audio files into spectrogram images.

python tools/json_gen_audio2coco.py

Please change the dataset path and file names for your needs

root = '/data/AIGC_3rd_2021/GIST_tr2_veryhard5000_all_tr2'
os.system('rm -rf '+root+'/img/')
os.system('mkdir '+root+'/img/')
wav_folder_path = os.path.join(root, 'wav')
img_folder_path = os.path.join(root, 'img')
train_label_path = os.path.join(root, 'tr2_devel_5000.json')
train_label_merge_out = os.path.join(root, 'label_coco_bbox.json')
Training

Step1. Change Data loading path of exps/yolox_audio__tr2/yolox_x.py

        self.train_path = '/data/AIGC_3rd_2021/GIST_tr2_veryhard5000_all_tr2'
        self.val_path = '/data/AIGC_3rd_2021/tr2_set_01_tune'
        self.train_ann = "label_coco_bbox.json"
        self.val_ann = "label_coco_bbox.json"

Step2. Begin training:

python3 tools/train.py -expn yolox_audio__tr2 -n yolox_audio_x \
-f exps/yolox_audio__tr2/yolox_x.py -d 4 -b 32 --fp16 \
-c /data/pretrained/yolox_x.pth
  • -d: number of gpu devices
  • -b: total batch size, the recommended number for -b is num-gpu * 8
  • -f: path of experiement file
  • --fp16: mixed precision training
  • --cache: caching imgs into RAM to accelarate training, which need large system RAM.

We are encouraged to use pretrained YOLOX model for the training. https://github.com/Megvii-BaseDetection/YOLOX

Inference Run following demo_audio.py
python3 tools/demo.py --demo image -expn yolox_audio__tr2 -n yolox_audio_x \
-f exps/yolox_audio__tr2/yolox_x.py \
-c YOLOX_outputs/yolox_audio__tr2/best_ckpt.pth \
--path /data/AIGC_3rd_2021/GIST_tr2_100/img/ \
--save_folder /data/yolox_out \
--conf 0.2 --nms 0.65 --tsize 256 --save_result --device gpu

From the demo_audio.py you can get on-offset VAD time and class of each audio chunk.

References

  • YOLOX baseline implemented by PyTorch: YOLOX
 @article{yolox2021,
  title={YOLOX: Exceeding YOLO Series in 2021},
  author={Ge, Zheng and Liu, Songtao and Wang, Feng and Li, Zeming and Sun, Jian},
  journal={arXiv preprint arXiv:2107.08430},
  year={2021}
}
  • Librosa for audio feature extraction: librosa
McFee, Brian, Colin Raffel, Dawen Liang, Daniel PW Ellis, Matt McVicar, Eric Battenberg, and Oriol Nieto. “librosa: Audio and music signal analysis in python.” In Proceedings of the 14th python in science conference, pp. 18-25. 2015.

Acknowledgement

This work was supported by the Institute of Information & communications Technology Planning & Evaluation (IITP) grant funded by the Korea government (MSIT) (No. 2021-0-00014).

Owner
intflow Inc.
Official Code Repositories of intflow.ai
intflow Inc.
Code for our paper A Transformer-Based Feature Segmentation and Region Alignment Method For UAV-View Geo-Localization,

FSRA This repository contains the dataset link and the code for our paper A Transformer-Based Feature Segmentation and Region Alignment Method For UAV

Dmmm 32 Dec 18, 2022
Implementation of the paper "Generating Symbolic Reasoning Problems with Transformer GANs"

Generating Symbolic Reasoning Problems with Transformer GANs This is the implementation of the paper Generating Symbolic Reasoning Problems with Trans

Reactive Systems Group 1 Apr 18, 2022
Rl-quickstart - Reinforcement Learning Quickstart

Reinforcement Learning Quickstart To get setup with the repository, git clone ht

UCLA DataRes 3 Jun 16, 2022
CVPR2022 (Oral) - Rethinking Semantic Segmentation: A Prototype View

Rethinking Semantic Segmentation: A Prototype View Rethinking Semantic Segmentation: A Prototype View, Tianfei Zhou, Wenguan Wang, Ender Konukoglu and

Tianfei Zhou 239 Dec 26, 2022
Api's bulid in Flask perfom to manage Todo Task.

Citymall-task Api's bulid in Flask perfom to manage Todo Task. Installation Requrements : Python: 3.10.0 MongoDB create .env file with variables DB_UR

Aisha Tayyaba 1 Dec 17, 2021
GPT-Code-Clippy (GPT-CC) is an open source version of GitHub Copilot

GPT-Code-Clippy (GPT-CC) is an open source version of GitHub Copilot, a language model -- based on GPT-3, called GPT-Codex -- that is fine-tuned on publicly available code from GitHub.

2.3k Jan 09, 2023
A toolkit for document-level event extraction, containing some SOTA model implementations

❤️ A Toolkit for Document-level Event Extraction with & without Triggers Hi, there 👋 . Thanks for your stay in this repo. This project aims at buildi

Tong Zhu(朱桐) 159 Dec 22, 2022
IJON is an annotation mechanism that analysts can use to guide fuzzers such as AFL.

IJON SPACE EXPLORER IJON is an annotation mechanism that analysts can use to guide fuzzers such as AFL. Using only a small (usually one line) annotati

Chair for Sys­tems Se­cu­ri­ty 146 Dec 16, 2022
Python scripts form performing stereo depth estimation using the CoEx model in ONNX.

ONNX-CoEx-Stereo-Depth-estimation Python scripts form performing stereo depth estimation using the CoEx model in ONNX. Stereo depth estimation on the

Ibai Gorordo 8 Dec 29, 2022
Orbivator AI - To Determine which features of data (measurements) are most important for diagnosing breast cancer and find out if breast cancer occurs or not.

Orbivator_AI Breast Cancer Wisconsin (Diagnostic) GOAL To Determine which features of data (measurements) are most important for diagnosing breast can

anurag kumar singh 1 Jan 02, 2022
competitions-v2

Codabench (formerly Codalab Competitions v2) Installation $ cp .env_sample .env $ docker-compose up -d $ docker-compose exec django ./manage.py migrat

CodaLab 21 Dec 02, 2022
AITUS - An atomatic notr maker for CYTUS

AITUS an automatic note maker for CYTUS. 利用AI根据指定乐曲生成CYTUS游戏谱面。 效果展示:https://www

GradiusTwinbee 6 Feb 24, 2022
Simple image captioning model - CLIP prefix captioning.

CLIP prefix captioning. Inference Notebook: 🥳 New: 🥳 Our technical papar is finally out! Official implementation for the paper "ClipCap: CLIP Prefix

688 Jan 04, 2023
Two-stage CenterNet

Probabilistic two-stage detection Two-stage object detectors that use class-agnostic one-stage detectors as the proposal network. Probabilistic two-st

Xingyi Zhou 1.1k Jan 03, 2023
A simple Python library for stochastic graphical ecological models

What is Viridicle? Viridicle is a library for simulating stochastic graphical ecological models. It implements the continuous time models described in

Theorem Engine 0 Dec 04, 2021
Pull sensitive data from users on windows including discord tokens and chrome data.

⭐ For a 🍪 Pegasus Pull sensitive data from users on windows including discord tokens and chrome data. Features 🟩 Discord tokens 🟩 Geolocation data

Addi 44 Dec 31, 2022
[ICCV 2021 Oral] PoinTr: Diverse Point Cloud Completion with Geometry-Aware Transformers

PoinTr: Diverse Point Cloud Completion with Geometry-Aware Transformers Created by Xumin Yu*, Yongming Rao*, Ziyi Wang, Zuyan Liu, Jiwen Lu, Jie Zhou

Xumin Yu 317 Dec 26, 2022
Code for paper "A Critical Assessment of State-of-the-Art in Entity Alignment" (https://arxiv.org/abs/2010.16314)

A Critical Assessment of State-of-the-Art in Entity Alignment This repository contains the source code for the paper A Critical Assessment of State-of

Max Berrendorf 16 Oct 14, 2022
Code and Datasets from the paper "Self-supervised contrastive learning for volcanic unrest detection from InSAR data"

Code and Datasets from the paper "Self-supervised contrastive learning for volcanic unrest detection from InSAR data" You can download the pretrained

Bountos Nikos 3 May 07, 2022
[ICLR 2021] "Neural Architecture Search on ImageNet in Four GPU Hours: A Theoretically Inspired Perspective" by Wuyang Chen, Xinyu Gong, Zhangyang Wang

Neural Architecture Search on ImageNet in Four GPU Hours: A Theoretically Inspired Perspective [PDF] Wuyang Chen, Xinyu Gong, Zhangyang Wang In ICLR 2

VITA 156 Nov 28, 2022