Reproduce results and replicate training fo T0 (Multitask Prompted Training Enables Zero-Shot Task Generalization)

Related tags

Deep Learningt-zero
Overview

T-Zero

This repository serves primarily as codebase and instructions for training, evaluation and inference of T0.

T0 is the model developed in Multitask Prompted Training Enables Zero-Shot Task Generalization. In this paper, we demonstrate that massive multitask prompted fine-tuning is extremely effective to obtain task zero-shot generalization. T0 outperforms or matches GPT-3 while being 16x smaller.

While the codebase in this repository mainly reproduces and replicates the training and evaluation of T0, it will be useful for future research on massively multitask fine-tuning.

Contents

  • Training: reproducing (or replicating) the massively multitask fine-tuning
  • Evaluation: reproducing the main results reported in the paper
  • Inference: running inference with T0

Citation

If you find this resource useful, please cite the paper introducing T0:

@misc{sanh2021multitask,
      title={Multitask Prompted Training Enables Zero-Shot Task Generalization},
      author={Victor Sanh and Albert Webson and Colin Raffel and Stephen H. Bach and Lintang Sutawika and Zaid Alyafeai and Antoine Chaffin and Arnaud Stiegler and Teven Le Scao and Arun Raja and Manan Dey and M Saiful Bari and Canwen Xu and Urmish Thakker and Shanya Sharma Sharma and Eliza Szczechla and Taewoon Kim and Gunjan Chhablani and Nihal Nayak and Debajyoti Datta and Jonathan Chang and Mike Tian-Jian Jiang and Han Wang and Matteo Manica and Sheng Shen and Zheng Xin Yong and Harshit Pandey and Rachel Bawden and Thomas Wang and Trishala Neeraj and Jos Rozen and Abheesht Sharma and Andrea Santilli and Thibault Fevry and Jason Alan Fries and Ryan Teehan and Stella Biderman and Leo Gao and Tali Bers and Thomas Wolf and Alexander M. Rush},
      year={2021},
      eprint={2110.08207},
      archivePrefix={arXiv},
      primaryClass={cs.LG}
}
Owner
BigScience Workshop
Research workshop on large language models - The Summer of Language Models 21
BigScience Workshop
official implementation for the paper "Simplifying Graph Convolutional Networks"

Simplifying Graph Convolutional Networks Updates As pointed out by #23, there was a subtle bug in our preprocessing code for the reddit dataset. After

Tianyi 727 Jan 01, 2023
OBBDetection is a oriented object detection library, which is based on MMdetection.

OBBDetection news: We are now updating OBBDetection to new vision based on MMdetection v2.10, which has more advanced models and more efficient featur

jbwang1997 401 Jan 02, 2023
Few-Shot Object Detection via Association and DIscrimination

Few-Shot Object Detection via Association and DIscrimination Code release of our NeurIPS 2021 paper: Few-Shot Object Detection via Association and DIs

Cao Yuhang 49 Dec 18, 2022
DRIFT is a tool for Diachronic Analysis of Scientific Literature.

About DRIFT is a tool for Diachronic Analysis of Scientific Literature. The application offers user-friendly and customizable utilities for two modes:

Rajaswa Patil 108 Dec 12, 2022
Wileless-PDGNet Implementation

Wileless-PDGNet Implementation This repo is related to the following paper: Boning Li, Ananthram Swami, and Santiago Segarra, "Power allocation for wi

6 Oct 04, 2022
PyTorch implementation for ACL 2021 paper "Maria: A Visual Experience Powered Conversational Agent".

Maria: A Visual Experience Powered Conversational Agent This repository is the Pytorch implementation of our paper "Maria: A Visual Experience Powered

Jokie 22 Dec 12, 2022
Automatic deep learning for image classification.

AutoDL AutoDL automates machine learning tasks enabling you to easily achieve strong predictive performance in your applications. With just a few line

wenqi 2 Oct 12, 2022
Implementation of ICCV 2021 oral paper -- A Novel Self-Supervised Learning for Gaussian Mixture Model

SS-GMM Implementation of ICCV 2021 oral paper -- Self-Supervised Image Prior Learning with GMM from a Single Noisy Image with supplementary material R

HUST-The Tan Lab 4 Dec 05, 2022
B-cos Networks: Attention is All we Need for Interpretability

Convolutional Dynamic Alignment Networks for Interpretable Classifications M. Böhle, M. Fritz, B. Schiele. B-cos Networks: Alignment is All we Need fo

58 Dec 23, 2022
An official source code for "Augmentation-Free Self-Supervised Learning on Graphs"

Augmentation-Free Self-Supervised Learning on Graphs An official source code for Augmentation-Free Self-Supervised Learning on Graphs paper, accepted

Namkyeong Lee 59 Dec 01, 2022
A pytorch implementation of the ACL2019 paper "Simple and Effective Text Matching with Richer Alignment Features".

RE2 This is a pytorch implementation of the ACL 2019 paper "Simple and Effective Text Matching with Richer Alignment Features". The original Tensorflo

287 Dec 21, 2022
Official implementation of VQ-Diffusion

Official implementation of VQ-Diffusion: Vector Quantized Diffusion Model for Text-to-Image Synthesis

Microsoft 592 Jan 03, 2023
Deep Two-View Structure-from-Motion Revisited

Deep Two-View Structure-from-Motion Revisited This repository provides the code for our CVPR 2021 paper Deep Two-View Structure-from-Motion Revisited.

Jianyuan Wang 145 Jan 06, 2023
Local trajectory planner based on a multilayer graph framework for autonomous race vehicles.

Graph-Based Local Trajectory Planner The graph-based local trajectory planner is python-based and comes with open interfaces as well as debug, visuali

TUM - Institute of Automotive Technology 160 Jan 04, 2023
The Wearables Development Toolkit - a development environment for activity recognition applications with sensor signals

Wearables Development Toolkit (WDK) The Wearables Development Toolkit (WDK) is a framework and set of tools to facilitate the iterative development of

Juan Haladjian 114 Nov 27, 2022
LSTM Neural Networks for Spectroscopic Studies of Type Ia Supernovae

Package Description The difficulties in acquiring spectroscopic data have been a major challenge for supernova surveys. snlstm is developed to provide

7 Oct 11, 2022
Companion code for the paper "Meta-Learning the Search Distribution of Black-Box Random Search Based Adversarial Attacks" by Yatsura et al.

META-RS This is the companion code for the paper "Meta-Learning the Search Distribution of Black-Box Random Search Based Adversarial Attacks" by Yatsu

Bosch Research 7 Dec 09, 2022
Concept drift monitoring for HA model servers.

{Fast, Correct, Simple} - pick three Easily compare training and production ML data & model distributions Goals Boxkite is an instrumentation library

98 Dec 15, 2022
A new video text spotting framework with Transformer

TransVTSpotter: End-to-end Video Text Spotter with Transformer Introduction A Multilingual, Open World Video Text Dataset and End-to-end Video Text Sp

weijiawu 67 Jan 03, 2023
Tensorflow implementation of our method: "Triangle Graph Interest Network for Click-through Rate Prediction".

TGIN Tensorflow implementation of our method: "Triangle Graph Interest Network for Click-through Rate Prediction". Files in the folder dataset/ electr

Alibaba 21 Dec 21, 2022