Official repository for "Intriguing Properties of Vision Transformers" (2021)

Overview

Intriguing Properties of Vision Transformers

Muzammal Naseer, Kanchana Ranasinghe, Salman Khan, Munawar Hayat, Fahad Shahbaz Khan, & Ming-Hsuan Yang

Paper Link

Abstract: Vision transformers (ViT) have demonstrated impressive performance across various machine vision tasks. These models are based on multi-head self-attention mechanisms that can flexibly attend to a sequence of image patches to encode contextual cues. An important question is how such flexibility (in attending image-wide context conditioned on a given patch) can facilitate handling nuisances in natural images e.g., severe occlusions, domain shifts, spatial permutations, adversarial and natural perturbations. We systematically study this question via an extensive set of experiments encompassing three ViT families and provide comparisons with a high-performing convolutional neural network (CNN). We show and analyze the following intriguing properties of ViT: (a) Transformers are highly robust to severe occlusions, perturbations and domain shifts, e.g., retain as high as 60% top-1 accuracy on ImageNet even after randomly occluding 80% of the image content. (b) The robust performance to occlusions is not due to a bias towards local textures, and ViTs are significantly less biased towards textures compared to CNNs. When properly trained to encode shape-based features, ViTs demonstrate shape recognition capability comparable to that of human visual system, previously unmatched in the literature. (c) Using ViTs to encode shape representation leads to an interesting consequence of accurate semantic segmentation without pixel-level supervision. (d) Off-the-shelf features from a single ViT model can be combined to create a feature ensemble, leading to high accuracy rates across a range of classification datasets in both traditional and few-shot learning paradigms. We show effective features of ViTs are due to flexible and dynamic receptive fields possible via self-attention mechanisms. Our code will be publicly released.

Citation

@misc{naseer2021intriguing,
      title={Intriguing Properties of Vision Transformers}, 
      author={Muzammal Naseer and Kanchana Ranasinghe and Salman Khan and Munawar Hayat and Fahad Shahbaz Khan and Ming-Hsuan Yang},
      year={2021},
      eprint={2105.10497},
      archivePrefix={arXiv},
      primaryClass={cs.CV}
}

We are in the process of cleaning our code. We will update this repo shortly. Here are the highlights of what to expect :)

  1. Pretrained ViT models trained on Stylized ImageNet (along with distilled ones). We will provide code to use these models for auto-segmentation.
  2. Training and Evaluations for our proposed off-the-shelf ensemble features.
  3. Code to evaluate any model on our proposed occulusion stratagies (random, foreground and background).
  4. Code for evaluation of permutation invaraince.
  5. Pretrained models to study the effect of varying patch sizes and positional encoding.
  6. Pretrained adversarial patches and code to evalute them.
  7. Training on Stylized Imagenet.

Requirements

pip install -r requirements.txt

Shape Biased Models

Our shape biased pretrained models can be downloaded from here. Code for evaluating their shape bias using auto segmentation on the PASCAL VOC dataset can be found under scripts. Please fix any paths as necessary. You may place the VOC devkit folder under data/voc of fix the paths appropriately.

Running segmentation evaluation on models:

./scripts/eval_segmentation.sh

Visualizing segmentation for images in a given folder:

./scripts/visualize_segmentation.sh

Off the Shelf Classification

Training code for off-the-shelf experiment in classify_metadataset.py. Seven datasets (aircraft CUB DTD fungi GTSRB Places365 INAT) available by default. Set the appropriate dir path in classify_md.sh by fixing DATA_PATH.

Run training and evaluation for a selected dataset (aircraft by default) using selected model (DeiT-T by default):

./scripts/classify_md.sh

Occlusion Evaluation

Evaluation on ImageNet val set (change path in script) for our proposed occlusion techniques:

./scripts/evaluate_occlusion.sh

Permutation Invariance Evaluation

Evaluation on ImageNet val set (change path in script) for the shuffle operation:

./scripts/evaluate_shuffle.sh

Varying Patch Sizes and Positional Encoding

Pretrained models to study the effect of varying patch sizes and positional encoding:

DeiT-T Model Top-1 Top-5 Pretrained
No Pos. Enc. 68.3 89.0 Link
Patch 22 68.7 89.0 Link
Patch 28 65.2 86.7 Link
Patch 32 63.1 85.3 Link
Patch 38 55.2 78.8 Link

References

Code borrowed from DeiT and DINO repositories.

Comments
  • Question about links of pretrained models

    Question about links of pretrained models

    Hi! First of all, thank the authors for the exciting work! I noticed that the checkpoint link of the pretrained 'deit_tiny_distilled_patch16_224' in vit_models/deit.py is different from the one of the shape-biased model DeiT-T-SIN (distilled), as given in README.md. I thought deit_tiny_distilled_patch16_224 has the same definition with DeiT-T-SIN (distilled). Do they have differences in model architecture or training procedure?

    opened by ZhouqyCH 3
  • Two questions on your paper

    Two questions on your paper

    Hi. This is heonjin.

    Firstly, big thanks to you and your paper. well-read and precise paper! I have two questions on your paper.

    1. Please take a look at Figure 9. image On the 'no positional encoding' experiment, there is a peak on 196 shuffle size of "DeiT-T-no-pos". Why is there a peak? and I wonder why there is a decreasing from 0 shuffle size to 64 of "DeiT-T-no-pos".

    2. On the Figure 14, image On the Aircraft(few shot), Flower(few shot) dataset, CNN performs better than DeiT. Could you explain this why?

    Thanks in advance.

    opened by hihunjin 2
  • Attention maps DINO Patchdrop

    Attention maps DINO Patchdrop

    Hi, thanks for the amazing paper.

    My question is about how which patches are dropped from the image with the DINO model. It looks like in the code in evaluate.py on line 132 head_number = 1. I want to understand the reason why this number was chosen (the other params used to index the attention maps seem to make sense). Wouldn't averaging the attention maps across heads give you better segmentation?

    Thanks,

    Ravi

    opened by rraju1 1
  • Support CPU when visualizing segmentations

    Support CPU when visualizing segmentations

    Most of the code to visualize segmentation is ready for GPU and CPU, but I bumped into this one place where there is a hard-coded .cuda() call. I changed it to .to(device) to support CPU.

    opened by cgarbin 0
  • Expand the instructions to install the PASCAL VOC dataset

    Expand the instructions to install the PASCAL VOC dataset

    I inspected the code to understand the expected directory structure. This note in the README may help other users put the dataset in the right place from the start.

    opened by cgarbin 0
  • Add note to use Python 3.8 because of PyTorch 1.7

    Add note to use Python 3.8 because of PyTorch 1.7

    PyTorch 1.7 requires Python 3.8. Refer to the discussion in https://github.com/pytorch/pytorch/issues/47354.

    Suggest adding this note to the README to help reproduce the environment because running pip install -r requirements.txt with the wrong version of Python gives an obscure error message.

    opened by cgarbin 0
  • Amazing work, but can it work on DETR?

    Amazing work, but can it work on DETR?

    ViT family show strong robustness on RandomDrop and Domain shift Problem. The thing is , I 'm working on object detection these days,detr is an end to end object detection methods which adopted Transformer's encoder decoder part, but the backbone I use , is Resnet50, it can still find the properties that your paper mentioned. Above all I want to ask two questions: (1).Do these intriguing properties come from encoder、decoder part? (2).What's the difference between distribution shift and domain shift(I saw distribution shift first time on your paper)?

    opened by 1184125805 0
Owner
Muzammal Naseer
PhD student at Australian National University.
Muzammal Naseer
CLIP (Contrastive Language–Image Pre-training) trained on Indonesian data

CLIP-Indonesian CLIP (Radford et al., 2021) is a multimodal model that can connect images and text by training a vision encoder and a text encoder joi

Galuh 17 Mar 10, 2022
BraTs-VNet - BraTS(Brain Tumour Segmentation) using V-Net

BraTS(Brain Tumour Segmentation) using V-Net This project is an approach to dete

Rituraj Dutta 7 Nov 27, 2022
Continuous Augmented Positional Embeddings (CAPE) implementation for PyTorch

PyTorch implementation of Continuous Augmented Positional Embeddings (CAPE), by Likhomanenko et al. Enhance your Transformer positional embeddings with easy-to-use augmentations!

Guillermo Cámbara 26 Dec 13, 2022
Prompt Tuning with Rules

PTR Code and datasets for our paper "PTR: Prompt Tuning with Rules for Text Classification" If you use the code, please cite the following paper: @art

THUNLP 118 Dec 30, 2022
In-place Parallel Super Scalar Samplesort (IPS⁴o)

In-place Parallel Super Scalar Samplesort (IPS⁴o) This is the implementation of the algorithm IPS⁴o presented in the paper Engineering In-place (Share

82 Dec 22, 2022
A generalist algorithm for cell and nucleus segmentation.

Cellpose | A generalist algorithm for cell and nucleus segmentation. Cellpose was written by Carsen Stringer and Marius Pachitariu. To learn about Cel

MouseLand 733 Dec 29, 2022
MagFace: A Universal Representation for Face Recognition and Quality Assessment

MagFace MagFace: A Universal Representation for Face Recognition and Quality Assessment in IEEE Conference on Computer Vision and Pattern Recognition

Qiang Meng 523 Jan 05, 2023
A unified 3D Transformer Pipeline for visual synthesis

Overview This is the official repo for the paper: "NÜWA: Visual Synthesis Pre-training for Neural visUal World creAtion". NÜWA is a unified multimodal

Microsoft 2.6k Jan 03, 2023
Reinforcement learning library(framework) designed for PyTorch, implements DQN, DDPG, A2C, PPO, SAC, MADDPG, A3C, APEX, IMPALA ...

Automatic, Readable, Reusable, Extendable Machin is a reinforcement library designed for pytorch. Build status Platform Status Linux Windows Supported

Iffi 348 Dec 24, 2022
Simple, but essential Bayesian optimization package

BayesO: A Bayesian optimization framework in Python Simple, but essential Bayesian optimization package. http://bayeso.org Online documentation Instal

Jungtaek Kim 74 Dec 05, 2022
FCAF3D: Fully Convolutional Anchor-Free 3D Object Detection

FCAF3D: Fully Convolutional Anchor-Free 3D Object Detection This repository contains an implementation of FCAF3D, a 3D object detection method introdu

SamsungLabs 153 Dec 29, 2022
GuideDog is an AI/ML-based mobile app designed to assist the lives of the visually impaired, 100% voice-controlled

Guidedog Authors: Kyuhee Jo, Steven Gunarso, Jacky Wang, Raghav Sharma GuideDog is an AI/ML-based mobile app designed to assist the lives of the visua

Kyuhee Jo 5 Nov 24, 2021
This code provides various models combining dilated convolutions with residual networks

Overview This code provides various models combining dilated convolutions with residual networks. Our models can achieve better performance with less

Fisher Yu 1.1k Dec 30, 2022
Preprocessed Datasets for our Multimodal NER paper

Unified Multimodal Transformer (UMT) for Multimodal Named Entity Recognition (MNER) Two MNER Datasets and Codes for our ACL'2020 paper: Improving Mult

76 Dec 21, 2022
pytorch implementation for Photo-Realistic Single Image Super-Resolution Using a Generative Adversarial Network arXiv:1609.04802

PyTorch SRResNet Implementation of Paper: "Photo-Realistic Single Image Super-Resolution Using a Generative Adversarial Network"(https://arxiv.org/abs

Jiu XU 436 Jan 09, 2023
Code accompanying the paper "Wasserstein GAN"

Wasserstein GAN Code accompanying the paper "Wasserstein GAN" A few notes The first time running on the LSUN dataset it can take a long time (up to an

3.1k Jan 01, 2023
TensorFlow 2 implementation of the Yahoo Open-NSFW model

TensorFlow 2 implementation of the Yahoo Open-NSFW model

Bosco Yung 101 Jan 01, 2023
Code for the paper "On the Power of Edge Independent Graph Models"

Edge Independent Graph Models Code for the paper: "On the Power of Edge Independent Graph Models" Sudhanshu Chanpuriya, Cameron Musco, Konstantinos So

Konstantinos Sotiropoulos 0 Oct 26, 2021
GeneGAN: Learning Object Transfiguration and Attribute Subspace from Unpaired Data

GeneGAN: Learning Object Transfiguration and Attribute Subspace from Unpaired Data By Shuchang Zhou, Taihong Xiao, Yi Yang, Dieqiao Feng, Qinyao He, W

Taihong Xiao 141 Apr 16, 2021
Point Cloud Denoising input segmentation output raw point-cloud valid/clear fog rain de-noised Abstract Lidar sensors are frequently used in environme

Point Cloud Denoising input segmentation output raw point-cloud valid/clear fog rain de-noised Abstract Lidar sensors are frequently used in environme

75 Nov 24, 2022