Xview3 solution - XView3 challenge, 2nd place solution

Overview

Xview3, 2nd place solution

https://iuu.xview.us/

test split aggregate score
public 0.593
holdout 0.604

Inference

To reproduce the submission results, first you need to install the required packages. The easiest way is to use docker to build an image or pull a prebuilt docker image.

Prebuilt docker image

One can pull the image from docker hub and use it for inference docker pull selimsefhub/xview3:mse_v2l_v2l_v3m_nf_b7_r34

Inference specification is the same as for XView reference solution

docker run --shm-size 16G --gpus=1 --mount type=bind,source=/home/xv3data,target=/on-docker/xv3data selimsefhub/xview3:mse_v2l_v2l_v3m_nf_b7_r34 /on-docker/xv3data/ 0157baf3866b2cf9v /on-docker/xv3data/prediction/prediction.csv

Build from scratch

docker build -t xview3 .

Training

For training I used an instance with 4xRTX A6000. For GPUs with smaller VRAM you will need to reduce crop sizes in configurations. As I did not make small tiles of large tiff and used memmap instead, fast disks like M.2 (ideally in raid0) should be used.

To reproduce training from scratch:

  1. build docker image as described above
  2. run docker image with modified entrypoint, e.g. docker run --rm --network=host --entrypoint /bin/bash --gpus all --ipc host -v /mnt:/mnt -it xview3:latest
  3. run ./train_all.sh NUM_GPUS DATA_DIR SHORE_DIR VAL_OUT_DIR, where DATA_DIR is the root directory with the dataset, SHORE_DIR path to shoreline data for validation set, VAL_OUT_DIR any path where csv prediction will be stored on evaluation phase after each epoch
  4. example ./train_all.sh 4 /mnt/md0/datasets/xview3/ /mnt/md0/datasets/xview3/shoreline/validation /mnt/md0/datasets/xview3/oof/
  5. it will overwrite existing weights under weights directory in container

Training time

As I used full resolution segmentation it was quite slow, 9-15 hours per model on 4 gpus.

Solution approach overview

Maritime object detection can be transformed to a binary segmentation and regressing problem using UNet like convolutional neural networks with the multiple outputs.

Targets

Model architecture and outputs

Generally I used UNet like encoder-decoder model with the following backbones:

  • EfficientNet V2 L - best performing
  • EfficientNet V2 M
  • EfficientNet B7
  • NFNet L0 (variant implemented by Ross Wightman). Works great with small batches due to absence of BatchNorm layers.
  • Resnet34

For the decoder I used standard UNet decoder with nearest upsampling without batch norm. SiLU was used as activation for convolutional layers. I used full resolution prediction for the masks.

Detection

Centers of objects are predicted as gaussians with sigma=2 pixels. Values are scaled between 0-255. Quality of dense gaussians is the most important part to obtain high aggregate score. During the competition I played with different loss functions with varied success:

  • Pure MSE loss - had high precision but low recall which was not good enough for the F1 score
  • MAE loss did not produce acceptable results
  • Thresholded MSE with sum reduction showed best results. Low value predictions did not play any role for the model's quality, so they are ignored. Though loss weight needed to be tuned properly.

Vessel classification

Vessel masks were prepared as binary round objects with fixed radius (4 pixels) Missing vessel value was transformed to 255 mask that was ignored in the loss function. As a loss function I used combination of BCE, Focal and SoftDice losses.

Fishing classification

Fishing masks were prepared the same way as vessel masks

Length estimation

Length mask - round objects with fixed radius and pixel values were set to length of the object. Missing length was ignored in the loss function. As a loss function for length at first I used MSE but then change to the loss function that directly reflected the metric. I.e.length_loss = abs(target - predicted_value)/target

Training procedure

Data

I tried to use train data split but annotation quality is not good enough and even pretraining on full train set and the finetuning on validation data was not better than simply using only validation data. In the end I used pure validation data with small holdout sets for evaluation. In general there was a data leak between val/train/test splits and I tried to use clean non overlapping validation which did not help and did not represent public scores well.
Data Leak

Optimization

Usually AdamW converges faster and provides better metrics for binary segmentation problems but it is prone to unstable training in mixed precision mode (NaNs/Infs in loss values). That's why as an optimizer I used SGD with the following parameters:

  • initial learning rate 0.003
  • cosine LR decay
  • weight decay 1e-4
  • nesterov momentum
  • momentum=0.9

For each model there were around 20-30k iterations. As I used SyncBN and 4 GPUs batch size=2 was good enough and I used larger crops instead of large batch size.

Inference

I used overlap inference with slices of size 3584x3584 and overlap 704 pixels. To reduce memory footprint predictions were transformed to uint8 and float16 data type before prostprocessing. See inference/run_inference.py for details.

Postprocessing

After center, vessel, fishing, length pixel masks are predicted they need to be transformed to detections in CSV format. From center gaussians I just used tresholding and found connected components. Each component is considered as a detected object. I used centroids of objects to obtain mean values for vessel/fishing/lengths from the respective masks.

Data augmentations

I only used random crops and random rotate 180. Ideally SAR orientation should be provided with the data (as in Spacenet 6 challenge) because SAR artifacts depend on Satellite direction.

Data acquisition, processing, and manipulation

Input

  • 2 SAR channels (VV, VH)
  • custom normalization (Intensity + 40)/15
  • missing pixel values changed to -100 before normalization

Spatial resolution of the supplementary data is very low and doesn't bring any value to the models.

During training and inference I used tifffile.memmap and cropped data from memory mapped file in order to avoid tile splitting.

You might also like...
4th place solution for the SIGIR 2021 challenge.

SIGIR-2021 (Tinkoff.AI) How to start Download train and test data: https://sigir-ecom.github.io/data-task.html Place it under sigir-2021/data/. Run py

 Meli Data Challenge 2021 - First Place Solution
Meli Data Challenge 2021 - First Place Solution

My solution for the Meli Data Challenge 2021

The sixth place winning solution (6/220) in 2021 Gaofen Challenge.
The sixth place winning solution (6/220) in 2021 Gaofen Challenge.

SwinTransformer + OBBDet The sixth place winning solution (6/220) in the track of Fine-grained Object Recognition in High-Resolution Optical Images, 2

Codebase for the solution that won first place and was awarded the most human-like agent in the 2021 NeurIPS Competition MineRL BASALT Challenge.

KAIROS MineRL BASALT Codebase for the solution that won first place and was awarded the most human-like agent in the 2021 NeurIPS Competition MineRL B

1st place solution in CCF BDCI 2021 ULSEG challenge

1st place solution in CCF BDCI 2021 ULSEG challenge This is the source code of the 1st place solution for ultrasound image angioma segmentation task (

4st place solution for the PBVS 2022 Multi-modal Aerial View Object Classification Challenge - Track 1 (SAR) at PBVS2022
4st place solution for the PBVS 2022 Multi-modal Aerial View Object Classification Challenge - Track 1 (SAR) at PBVS2022

A Two-Stage Shake-Shake Network for Long-tailed Recognition of SAR Aerial View Objects 4st place solution for the PBVS 2022 Multi-modal Aerial View Ob

2nd solution of ICDAR 2021 Competition on Scientific Literature Parsing, Task B.
2nd solution of ICDAR 2021 Competition on Scientific Literature Parsing, Task B.

TableMASTER-mmocr Contents About The Project Method Description Dependency Getting Started Prerequisites Installation Usage Data preprocess Train Infe

This is the solution for 2nd rank in Kaggle competition: Feedback Prize - Evaluating Student Writing.

Feedback Prize - Evaluating Student Writing This is the solution for 2nd rank in Kaggle competition: Feedback Prize - Evaluating Student Writing. The

🏆 The 1st Place Submission to AICity Challenge 2021 Natural Language-Based Vehicle Retrieval Track (Alibaba-UTS submission)
🏆 The 1st Place Submission to AICity Challenge 2021 Natural Language-Based Vehicle Retrieval Track (Alibaba-UTS submission)

AI City 2021: Connecting Language and Vision for Natural Language-Based Vehicle Retrieval 🏆 The 1st Place Submission to AICity Challenge 2021 Natural

Owner
Selim Seferbekov
Selim Seferbekov
PyTorch implementation for MINE: Continuous-Depth MPI with Neural Radiance Fields

MINE: Continuous-Depth MPI with Neural Radiance Fields Project Page | Video PyTorch implementation for our ICCV 2021 paper. MINE: Towards Continuous D

Zijian Feng 325 Dec 29, 2022
Scrutinizing XAI with linear ground-truth data

This repository contains all the experiments presented in the corresponding paper: "Scrutinizing XAI using linear ground-truth data with suppressor va

braindata lab 2 Oct 04, 2022
JAX bindings to the Flatiron Institute Non-uniform Fast Fourier Transform (FINUFFT) library

JAX bindings to FINUFFT This package provides a JAX interface to (a subset of) the Flatiron Institute Non-uniform Fast Fourier Transform (FINUFFT) lib

Dan Foreman-Mackey 32 Oct 15, 2022
The Official Repository for "Generalized OOD Detection: A Survey"

Generalized Out-of-Distribution Detection: A Survey 1. Overview This repository is with our survey paper: Title: Generalized Out-of-Distribution Detec

Jingkang Yang 338 Jan 03, 2023
Code for Efficient Visual Pretraining with Contrastive Detection

Code for DetCon This repository contains code for the ICCV 2021 paper "Efficient Visual Pretraining with Contrastive Detection" by Olivier J. Hénaff,

DeepMind 56 Nov 13, 2022
2nd solution of ICDAR 2021 Competition on Scientific Literature Parsing, Task B.

TableMASTER-mmocr Contents About The Project Method Description Dependency Getting Started Prerequisites Installation Usage Data preprocess Train Infe

Jianquan Ye 298 Dec 21, 2022
EMNLP'2021: SimCSE: Simple Contrastive Learning of Sentence Embeddings

SimCSE: Simple Contrastive Learning of Sentence Embeddings This repository contains the code and pre-trained models for our paper SimCSE: Simple Contr

Princeton Natural Language Processing 2.5k Dec 29, 2022
A web application that provides real time temperature and humidity readings of a house.

About A web application which provides real time temperature and humidity readings of a house. If you're interested in the data collected so far click

Ben Thompson 3 Jan 28, 2022
A Python library for generating new text from existing samples.

ReMarkov is a Python library for generating text from existing samples using Markov chains. You can use it to customize all sorts of writing from birt

8 May 17, 2022
Image to Image translation, image generataton, few shot learning

Semi-supervised Learning for Few-shot Image-to-Image Translation [paper] Abstract: In the last few years, unpaired image-to-image translation has witn

yaxingwang 49 Nov 18, 2022
Volumetric parameterization of the placenta to a flattened template

placenta-flattening A MATLAB algorithm for volumetric mesh parameterization. Developed for mapping a placenta segmentation derived from an MRI image t

Mazdak Abulnaga 12 Mar 14, 2022
Official implementation of the ICCV 2021 paper: "The Power of Points for Modeling Humans in Clothing".

The Power of Points for Modeling Humans in Clothing (ICCV 2021) This repository contains the official PyTorch implementation of the ICCV 2021 paper: T

Qianli Ma 158 Nov 24, 2022
[AAAI2022] Source code for our paper《Suppressing Static Visual Cues via Normalizing Flows for Self-Supervised Video Representation Learning》

SSVC The source code for paper [Suppressing Static Visual Cues via Normalizing Flows for Self-Supervised Video Representation Learning] samples of the

7 Oct 26, 2022
EdiBERT, a generative model for image editing

EdiBERT, a generative model for image editing EdiBERT is a generative model based on a bi-directional transformer, suited for image manipulation. The

16 Dec 07, 2022
Scheduling BilinearRewards

Scheduling_BilinearRewards Requirement Python 3 =3.5 Structure main.py This file includes the main function. For getting the results in Figure 1, ple

junghun.kim 0 Nov 25, 2021
Official pytorch code for SSAT: A Symmetric Semantic-Aware Transformer Network for Makeup Transfer and Removal

SSAT: A Symmetric Semantic-Aware Transformer Network for Makeup Transfer and Removal This is the official pytorch code for SSAT: A Symmetric Semantic-

ForeverPupil 57 Dec 13, 2022
Skyformer: Remodel Self-Attention with Gaussian Kernel and Nystr\"om Method (NeurIPS 2021)

Skyformer This repository is the official implementation of Skyformer: Remodel Self-Attention with Gaussian Kernel and Nystr"om Method (NeurIPS 2021).

Qi Zeng 46 Sep 20, 2022
Implementation of CoCa, Contrastive Captioners are Image-Text Foundation Models, in Pytorch

CoCa - Pytorch Implementation of CoCa, Contrastive Captioners are Image-Text Foundation Models, in Pytorch. They were able to elegantly fit in contras

Phil Wang 565 Dec 30, 2022
MVP Benchmark for Multi-View Partial Point Cloud Completion and Registration

MVP Benchmark: Multi-View Partial Point Clouds for Completion and Registration [NEWS] 2021-07-12 [NEW 🎉 ] The submission on Codalab starts! 2021-07-1

PL 93 Dec 21, 2022
PyTorch implementation of Rethinking Positional Encoding in Language Pre-training

TUPE PyTorch implementation of Rethinking Positional Encoding in Language Pre-training. Quickstart Clone this repository. git clone https://github.com

Jake Tae 5 Jan 27, 2022