Open-source code for Generic Grouping Network (GGN, CVPR 2022)

Overview

Open-World Instance Segmentation: Exploiting Pseudo Ground Truth From Learned Pairwise Affinity

Pytorch implementation for "Open-World Instance Segmentation: Exploiting Pseudo Ground Truth From Learned Pairwise Affinity" (CVPR 2022, link TBD) by Weiyao Wang, Matt Feiszli, Heng Wang, Jitendra Malik, and Du Tran. We propose a framework for open-world instance segmentation, Generic Grouping Network (GGN), which exploits pseudo Ground Truth training strategy. On the same backbone, GGN produces impressive AR gains compared to closed-world training on cross-category generalization (+11% VOC to Non-VOC) and cross-dataset generalization (+5.2% COCO to UVO).

What is it? Open-world instance segmentation requires a model to group pixels into object instances without a pre-defined taxonomy, that is, both "seen" categories (those present during training) and "unseen" categories (not seen during training). There is generally a large performance gap between the seen and unseen domains. For example, a baseline Mask R-CNN miss 15 annotated masks in the example below. Without additional training data or annotations, Mask R-CNN trained with GGN framework produces 9 more segments correctly, being much closer to ground truth annotations.

How we do it? Our approach first learns a pairwise affinity predictor that captures correctly if two pixels belong to same instance or not. We demonstrate such pairwise affinity representation generalizes well to unseen domains. We then use a grouping module (e.g. MCG) to extract and rank segments from predicted PA. We can run this on any image dataset without using annotations; we extract highest ranked segments as "pseudo ground truth" candidate masks. This is a large and category-agnostic set; we add it to our (much smaller) datasets of curated annotations to train a detector.


About the code. This repo is built based on mmdetection with the addition of OLN backbone (concurrent work). The repo is tested under Python 3.7, PyTorch 1.7.0, Cuda 11.0, and mmcv==1.2.5. We thank authors of OLN for releasing their work to facilitate research.

Model zoo

Below we release PA predictor models, pseudo-GT generated by PA predictors and GGN trained with both annotated-GT and pseudo-GT. We also release some of the processed annotations from LVIS to conduct cross-category generalization experiments.

Training Eval url Baseline AR GGN AR Top-K Pseudo
Person, COCO Non-Person, COCO PA/Pseudo/GGN 4.9 20.9 3
VOC, COCO Non-VOC, COCO PA/Pseudo/Pseudo-OLN/ GGN/GGN-OLN 19.9 28.7 (33.7 with OLN) 3
COCO, LVIS Non-COCO, LVIS PA/Pseudo/GGN 16.5 20.4 1
Non-COCO, LVIS COCO PA/Pseudo/GGN 21.7 23.6 1
COCO UVO PA/Pseudo/GGN 40.1 43.4 3
COCO, random init ImageNet PA/Pseudo/GGN 10

We remark using large-scale pre-training in the last row as initialization and finetune GGN on COCO with pseudo-GT on COCO gives further improvement (45.3 on UVO), with model.

Installation

This repo is built based on mmdetection.

You can use following commands to create conda env with related dependencies.

conda create -n ggn python=3.7 -y
conda activate ggn
conda install pytorch=1.7.0 torchvision cudatoolkit=11.0 -c pytorch -y
pip install mmcv-full
pip install -r requirements.txt
pip install -v -e .

Please also refer to get_started.md for more details of installation.

Next you will need to build the library for our grouping module:

cd pa_lib/cython_lib
python3 setup.py build_ext --inplace

Data Preparation

Download and extract COCO 2017 train and val images with annotations from http://cocodataset.org. We expect the directory structure to be the following:

path/to/coco/
  annotations/  # annotation json files
  train2017/    # train images
  val2017/      # val images

Our work also uses LVIS, UVO and ADE20K. To use ADE20K, please convert them into COCO-style annotations.

Training of pairwise affinity predictor

bash tools/dist_train.sh configs/pairwise_affinity/pa_train.py ${NUM_GPUS} --work-dir ${WORK_DIR}

Test PA

We provide a tool tools/test_pa.py to directly evaluate PA performance (e.g. on PA prediction and on grouped masks).

python tools/test_pa.py configs/pairwise_affinity/pa_train.py ${WORK_DIR}/latest.pth --eval pa --eval-proposals --test-partition nonvoc

Extracting pseudo-GT masks

We first begin by extracting masks. Example config pa_extract.py extracts pseudo-GT masks from PA trained on VOC subsets of COCO. use-gt-masks flag asks the pipeline to compute maximum IoU an extracted masks has with the GT. It is recommended to split the dataset into multiple shards to run extractions. On original image resolution and Nvidia V100 machine, it takes about 4.8s per image to run the full pipeline (compute PA, run grouping, ranking then compute IoU with annotated GT) without globalization and trained ranker or 10s with globalization and trained ranker.

python tools/extract_pa_masks.py configs/pairwise_affinity/pa_extract.py ${PA_MODEL_PATH} --out ${OUT_DIR}/masks.json --use-gt-masks 1

The extracted masks will be stored in JSON with the following format

[
  [segm1, segm2,..., segm20] ## Result of an image
  ...
]

We refer to tools/merge_annotations.py for reference on formatting the extracted masks as a new COCO-style annotation file. We remark that tools/interpolate_extracted_masks.py may be necessary if not running extraction on original image resolution.

Training of GGN

Please specify additional_ann_file with the extracted pseudo-GT in previous step in class_agn_mask_rcnn_pa.py.

bash tools/dist_train.sh configs/mask_rcnn/class_agn_mask_rcnn_pa.py ${NUM_GPUS}

class_agn_mask_rcnn_gn_online.py is used to train ImageNet extracted masks since there are too many annotations and we cannot store everything in a single json file without OOM. We will need to break it into per-image annotations in the format of "{image_id}.json".

Testing

python tools/test.py configs/mask_rcnn/class_agn_mask_rcnn.py ${WORK_DIR}/latest.pth --eval segm

To cite this work

@article{wang2022ggn,
  title={Open-World Instance Segmentation: Exploiting Pseudo Ground Truth From Learned Pairwise Affinity},
  author={Wang, Weiyao and Feiszli, Matt and Wang, Heng and Malik, Jitendra and Tran, Du},
  journal={CVPR},
  year={2022}
}

License

This project is under the CC-BY-NC 4.0 license. See LICENSE for details.

Owner
Meta Research
Meta Research
ML-Ensemble – high performance ensemble learning

A Python library for high performance ensemble learning ML-Ensemble combines a Scikit-learn high-level API with a low-level computational graph framew

Sebastian Flennerhag 764 Dec 31, 2022
Repository for the AugmentedPCA Python package.

Overview This Python package provides implementations of Augmented Principal Component Analysis (AugmentedPCA) - a family of linear factor models that

Billy Carson 6 Dec 07, 2022
Bare bones use-case for deploying a containerized web app (built in streamlit) on AWS.

Containerized Streamlit web app This repository is featured in a 3-part series on Deploying web apps with Streamlit, Docker, and AWS. Checkout the blo

Collin Prather 62 Jan 02, 2023
[NeurIPS 2020] Semi-Supervision (Unlabeled Data) & Self-Supervision Improve Class-Imbalanced / Long-Tailed Learning

Rethinking the Value of Labels for Improving Class-Imbalanced Learning This repository contains the implementation code for paper: Rethinking the Valu

Yuzhe Yang 656 Dec 28, 2022
MAVE: : A Product Dataset for Multi-source Attribute Value Extraction

The dataset contains 3 million attribute-value annotations across 1257 unique categories on 2.2 million cleaned Amazon product profiles. It is a large, multi-sourced, diverse dataset for product attr

Google Research Datasets 89 Jan 08, 2023
Using this codebase as a tool for my own research. Making some modifications to the original repo for my own purposes.

For SwapNet Create a list.txt file containing all the images to process. This can be done with the GNU find command: find path/to/input/folder -name '

Andrew Jong 2 Nov 10, 2021
Video Representation Learning by Recognizing Temporal Transformations. In ECCV, 2020.

Video Representation Learning by Recognizing Temporal Transformations [Project Page] Simon Jenni, Givi Meishvili, and Paolo Favaro. In ECCV, 2020. Thi

Simon Jenni 46 Nov 14, 2022
Few-NERD: Not Only a Few-shot NER Dataset

Few-NERD: Not Only a Few-shot NER Dataset This is the source code of the ACL-IJCNLP 2021 paper: Few-NERD: A Few-shot Named Entity Recognition Dataset.

THUNLP 319 Dec 30, 2022
Asymmetric metric learning for knowledge transfer

Asymmetric metric learning This is the official code that enables the reproduction of the results from our paper: Asymmetric metric learning for knowl

20 Dec 06, 2022
Using OpenAI's CLIP to upscale and enhance images

CLIP Upscaler and Enhancer Using OpenAI's CLIP to upscale and enhance images Based on nshepperd's JAX CLIP Guided Diffusion v2.4 Sample Results Viewpo

Tripp Lyons 5 Jun 14, 2022
Official PyTorch Implementation of Mask-aware IoU and maYOLACT Detector [BMVC2021]

The official implementation of Mask-aware IoU and maYOLACT detector. Our implementation is based on mmdetection. Mask-aware IoU for Anchor Assignment

Kemal Oksuz 46 Sep 29, 2022
TGS Salt Identification Challenge

TGS Salt Identification Challenge This is an open solution to the TGS Salt Identification Challenge. Note Unfortunately, we can no longer provide supp

neptune.ai 123 Nov 04, 2022
SPLADE: Sparse Lexical and Expansion Model for First Stage Ranking

SPLADE 🍴 + 🥄 = 🔎 This repository contains the weights for four models as well as the code for running inference for our two papers: [v1]: SPLADE: S

NAVER 170 Dec 28, 2022
A setup script to generate ITK Python Wheels

ITK Python Package This project provides a setup.py script to build ITK Python binary packages and infrastructure to build ITK external module Python

Insight Software Consortium 59 Dec 14, 2022
An implementation of "Learning human behaviors from motion capture by adversarial imitation"

Merel-MoCap-GAIL An implementation of Merel et al.'s paper on generative adversarial imitation learning (GAIL) using motion capture (MoCap) data: Lear

Yu-Wei Chao 34 Nov 12, 2022
Simple reference implementation of GraphSAGE.

Reference PyTorch GraphSAGE Implementation Author: William L. Hamilton Basic reference PyTorch implementation of GraphSAGE. This reference implementat

William L Hamilton 861 Jan 06, 2023
Official source code of Fast Point Transformer, CVPR 2022

Fast Point Transformer Project Page | Paper This repository contains the official source code and data for our paper: Fast Point Transformer Chunghyun

182 Dec 23, 2022
Official implementation of the Neurips 2021 paper Searching Parameterized AP Loss for Object Detection.

Parameterized AP Loss By Chenxin Tao, Zizhang Li, Xizhou Zhu, Gao Huang, Yong Liu, Jifeng Dai This is the official implementation of the Neurips 2021

46 Jul 06, 2022
FreeSOLO for unsupervised instance segmentation, CVPR 2022

FreeSOLO: Learning to Segment Objects without Annotations This project hosts the code for implementing the FreeSOLO algorithm for unsupervised instanc

NVIDIA Research Projects 253 Jan 02, 2023
Code release for Hu et al. Segmentation from Natural Language Expressions. in ECCV, 2016

Segmentation from Natural Language Expressions This repository contains the code for the following paper: R. Hu, M. Rohrbach, T. Darrell, Segmentation

Ronghang Hu 88 May 24, 2022